DRAINAGE NARRATIVE AND ASSESSMENT FOR PROPOSED COMMERCIAL CONTRACTOR UNITS PLAT MAP 10 LOT 42 71 HARKNEY HILL RD. COVENTRY, RI March 2025

Prepared by: Crossman Engineering Engineers & Surveyors 100 Jefferson Blvd Warwick, RI 02888

Table of Contents

Section	<u>Page</u>
Project Narrative	1
Minimum Standard 2: Groundwater Recharge	2
Minimum Standard 3: Water Quality Improvements	3
Minimum Standard 4: Conveyance and Natural Channel Protection	4
Minimum Standard 5: Overbank Flood Protection (Runoff Calculations)	4
Minimum Standard 6: Redevelopment and Infill Projects	5
Minimum Standard 7: Pollution Prevention	5
Minimum Standard 8: Land Uses with Higher Potential Pollutant Loads	5
Minimum Standard 9: Illicit Discharges	5
Minimum Standard 10: Construction Erosion and Sediment Control	5
Minimum Standard 11: Stormwater Management System – Maintenance Operation	6
Appendix	6
Appendix A - RISDISM Appendix A: Stormwater Management Checklist	
Appendix B- Stormwater Runoff Calculations (HydroCAD)	
Appendix C – Soil Evaluations	
Appendix D – Soil Survey Map	
Appendix E – FEMA Flood Map	
Appendix F- Groundwater Mounding Analysis	
Appendix G- Watershed Maps	

Project Narrative

This Drainage Narrative and Assessment has been prepared for the proposed commercial contractor units at 71 Harkney Hill Road, Coventry, Rhode Island. The parcel is identified on Plat Mat 10 as Lot 42. The site is 2.2 acres and is relatively flat with two low areas. Runoff from the site ultimately flows toward the southerly property line. The site is within the Maple Root Pond Watershed (Waterbody ID RI0006013L-12).

According to the Rhode Island Department of Environmental Management (RIDEM) Environmental Resource Map, this site is classified under groundwater class GAA, is not located within 200 feet of wetlands, or in a wellhead protection area or critical resource area. The site is not within a 100-yr flood zone but is within a RIDEM Natural Heritage Area (Id128).

The proposed development will be completed in two phases. Phase 1 includes the construction of an 8,000-square-foot metal frame building, with parking areas, landscaping and new utilities. Phase 2 will include two 6,000-sf metal frame buildings with additional parking and landscaping. The stormwater management system is proposed to accept and treat runoff from both phases, and will be constructed under phase 1. This stormwater management system includes an infiltration basin, with catch basins and pipe for collection and conveyance. This design will meet the Town of Coventry stormwater regulations and also the Rhode Island Stormwater Design and Installation Standards Manual (RISDISM) guidelines. Water quality, water quality pretreatment, recharge and peak flow attenuation are provided by above ground infiltration basin. Provided in the following table is a watershed summary.

	Existing		Post Development	
Watershed	Impervious Area	Pervious Area	Impervious Area	Pervious Area
EA1	2,627 sf (off-site)	23,018 sf		
EA2	2,509 sf (off-site)	33,674 sf		
EA3		48,508 sf		
PA1			8,767 SF	
PA2			13,517 sf	5,292 sf
PA3			8,000 sf	
PA4			6,000 sf	
			2,502 sf (off-site)	
PA5			14,919 sf (on-site)	20,883 sf
PA6				16,538 sf
PA7			6,000 sf	
PA8			225 sf (off-site)	5,059 sf
			2,634 sf (on-site)	
Total	5,136 sf	105,200 sf	62,564 sf	47,772 sf

 Table 1 Watershed Area Summary (square foot)

Minimum Standard 2: Groundwater Recharge

Stormwater must be recharged within the same watershed to maintain baseflow at predevelopment recharge levels to the maximum extent practicable. The objective of the groundwater recharge standard is to protect water table levels, stream baseflow, wetlands, and soil moisture levels. The groundwater recharge volume calculations are provided below:

Required Recharge Volume (RRv):

RRv = 1" x F x I /12

Where:	RRv	=	Required Recharge Volume
	F	=	Recharge Factor (Rhode Island Stormwater Design and Installation
			Standards Manual) Note: The Rhode Island Soil Survey identifies existing
			soils within the area as Merrimac (MmA) and Hinkley (HkA) soil groups
			which consist of sands and gravel, and are in the Hydrologic Group A. The
			Hydrologic Soil Group A recharge coefficient is F= 0.60
	Ι	=	Impervious Treatment Area (on-site) = $57,428 \text{ sf} (1.32 \text{ acres})$

RRv = 1" x 0.60 x (57,428 sf)/12 = 2,872 cubic feet

Provided Recharge Volume (PRv):

The recharge volume for the site is provided within the infiltration basin. All impervious runoff from the site flows into the infiltration basin, and the storage volume within the basin, below the outlet is the recharge volume provided. Storage volumes are provided in the stage-storage-volume tables in the Stormwater Runoff Calculations (HydroCAD) section of the Appendix.

BMP PRv = 19,684 cf (below the outlet weir elevation 256.5)

Drawdown within 48 hours:

Water within the proposed drainage facilities will infiltrate (drawdown) into the soils below the system. Soil evaluations have been conducted within the footprint of the proposed infiltration systems to determine the appropriate infiltration design rates using the soil textures. The subsoil beneath the proposed infiltration system used for the design infiltration rate of 8.27 in/hr, which is consistent with the soil mapping and soil evaluation data obtained for this site. The drawdown calculations are provided below.

$T_D = PR_V$	v / (K x A)		
Where:	T _D	=	Drawdown Time
	PRv	=	Provided Recharge Volume
	Κ	=	Infiltration Rate
	А	=	Bottom Surface Area of Infiltration BMP
			BMP = 1,246 sf

BMP : $T_D = 19,684 \text{ cf} / [(8.27 \text{ in/hr}) \text{ x} (1'/12'') \text{ x} (1,256 \text{ sf})] = 23 \text{ hours}$

Minimum Standard 3: Water Quality Improvements

Stormwater runoff from impervious surfaces must be treated before discharge. The amount of runoff that must be treated is referred to as the required Water Quality Volume. The proposed basins have been sized and designed to provide a Water Quality Volume greater than the minimum required to satisfy this standard. Refer to the calculations and tables below for the water quality requirements and provisions for the site.

Required Water Quality Volume (RWQv):

RWQv = 1" x I /12

Where: RWQv = Required Water Quality Volume I = Impervious Treatment Area (on-site) = 57,428 sf (1.32 acres)

RWQv = 1" x (57,428 sf)/12 = 4,786 cubic feet

Provided Water Quality Volume (PWQv):

The provided water quality volume represents the storage volume within the infiltration basin below the outlet weir elevation. Impervious area on site flows into the infiltration basin, and the storage volume within the basin, below the outlet is the water quality volume provided. Storage volumes are provided in the stage-storage-volume tables in the Stormwater Runoff Calculations (HydroCAD) section of the Appendix.

PWQv = 19,684 cf (below the outlet weir elevation (256.5)

Pretreatment

Prior to entering the proposed water quality facilities, stormwater runoff requires pretreatment. The pretreatment required provided for the site is 25% of the water quality volume required. Provided below are the pretreatment calculations

Required pretreatment volume is 25% of the required $WQ_V = 4,786$ cf x 25% = 1,197 cf

Provided pretreatment volume = 1,230 cf (volume below the top of overflow curb (elev 255.00') Calculation: (Bottom area + Top area) / 2 x Height = Volume (1,016 sf + 1,443 sf)/2 x 2 ft = 1,230 cf

Minimum Standard 4: Conveyance and Natural Channel Protection (CPv)

The channel protection volume (CP_v) is the 24-hour extended detention of the post-development runoff volume from the 1 year, 24-hour, Type III storm event. This minimum standard is met because all runoff from post development impervious areas is fully infiltrated on site for the 1-100 year storm event.

Minimum Standard 5: Overbank Flood Protection (Runoff Calculations)

Reducing the peak flow rates for the 10-year and 100- year storm events is required to demonstrate compliance with the Overbank Flood Protection standard. The purpose of this criterion is to protect downstream structures and properties from increased runoff flows and velocities from upstream development. The proposed drainage systems have been designed to reduce peak flows for all storm events up to the 100-year storm event.

Hydrograph Methodology

Existing and post-development hydrographs have been analyzed to compare runoff for existing and post development conditions. Runoff from the existing and post development hydrographs has been computed utilizing "HydroCAD" Version 10.0 software. Generally, the methodology encompasses the Soil Conservation Service's unit hydrograph method used in TR-20, which provided a basis for TR-55. The hydrologic data is the same information required for TR-55 and includes watershed areas, SCS runoff curve numbers, and the travel length from the most remote watershed point. With this data, complete SCS hydrographs can be developed for a 24-hour Type III storm. The watershed time of concentration is computed internally using the velocity method shown in SCS/NCRS Methodologies. The velocity method assumes that time of concentration is the sum of travel times for segments along the hydraulically most distant flow path.

The hydraulically most distant point is the point with the longest time to the watershed outlet and not necessarily the point with the longest flow distance to the outlet. The site is analyzed by modeling stage/storage/discharge relationships within the "HydroCAD" program.

The "HydroCAD" program automatically routes hydrographs through BMP to determine the resulting outflow and also can combine hydrographs to determine cumulative sub watershed flows. The HydroCAD stormwater runoff calculations are provided in Appendix.

Watershed	1.2"	1-YR	10-YR	25-YR	100-YR
Ex WSD	0.00	0.00	0.00	0.00	0.05
Pr WSD	0.00	0.00	0.00	0.00	0.05
Change	-0.00	-0.00	-0.00	-0.00	-0.05

Watershed A - Existing Conditions vs. Post-Development Peak Flow Rate (CFS) Comparisons

The above tables demonstrates that there is a reduction in peak flow for all storm events.

Minimum Standard 6: Redevelopment and Infill Projects

This project is not considered a redevelopment or infill site

Minimum Standard 7: Pollution Prevention

The proposed stormwater pollution prevention practices to be implemented during construction are described and outlined in the accompanying site plans and the Soil Erosion and Sediment Control Plan (SESCP).

Minimum Standard 8: Land Uses with Higher Potential Pollutant Loads

The proposed improvements are not considered LUHPPL.

Minimum Standard 9: Illicit Discharges

This Minimum Standard is not applicable to the project.

Minimum Standard 10: Construction Erosion and Sediment Control

The proposed vegetative and structural practices to be implemented during construction are described and outlined in the accompanying site plans and the standalone Soil Erosion and Sediment Control Plan document. In addition, the operator should initiate appropriate permanent stabilization practices on all disturbed areas as soon as possible but not more than fourteen (14) days after the construction activity in that area has temporarily or permanently ceased, unless the activity is to resume within twenty-one (21) days. If construction cannot begin within twenty-one (21) days of completing site preparation activities, all disturbed areas shall be stabilized with loam and seeding.

Additional Controls

- Install perimeter erosion controls, install a crushed stone construction entrance will be located at the site's only access point.
- Review SESC Plan and site plans soil erosion control notes
- The Contractor is required to notify local authorities and the Rhode Island Department of Environmental Management, Office of Waste Management, of any hazardous material spill.
- The Contractor is required to maintain the site in an orderly and clean state. All construction waste shall be stored in appropriate containers prior to removal and contact with precipitation shall be kept to a minimum.
- General Maintenance procedures are outlined in the accompanying Site Plans. In addition, the Operator and Contractor are required to inspect all erosion controls on the site at least once every seven (7) calendar days and within twenty-four (24) hours after a rain event, which generates 0.25 inches of rain in a twenty-four (24) hour period and/or after a significant amount of runoff.

Minimum Standard 11: Stormwater Management System – Maintenance Operation

The proposed stormwater management system maintenance and inspection requirements shall be implemented by the owner after construction is described and outlined in the accompanying Long-Term Operation and Maintenance Plan.

Appendix

Appendix A - RISDISM Appendix A: Stormwater Management Checklist

Appendix B- Stormwater Runoff Calculations (HydroCAD)

Appendix C – Soil Evaluations

Appendix D – Soil Survey Map

Appendix E – FEMA Flood Map

Appendix F – Groundwater Mounding Calculations

Appendix G – Watershed Maps

Appendix A - RISDISM Appendix A: Stormwater Management Checklist

<u>APPENDIX A</u>: STORMWATER MANAGEMENT PLAN CHECKLIST AND LID PLANNING REPORT – STORMWATER DESIGN SUMMARY

PROJECT NAME	(RIDEM USE ONLY)
Proposed Commercial Contractor Units	
TOWN	STW/WQC File #:
Coventry, RI	
The proposed project is to install 3 commercial contractor buildings on a site located	Date Received:
at 71 Harkney Hill Road, Coventry, Rhode Island. The parcel is identified on Plat Mat	
10 as Lot 42. The site is 2.2 acres and is relatively flat with two low areas. Runoff	
from the site ultimately flows toward the southerly property line. The site is within the	
Maple Root Pond Watershed (Waterbody ID RI0006013L-12).	
The proposed development will be completed in two phases. Phase 1 includes the	
construction of an 8,000-square-foot metal frame building, with parking areas,	
landscaping and new utilities. Phase 2 will include two 6,000-sf metal frame buildings	
with additional parking and landscaping. The stormwater management system is	
proposed to accept and treat runoff from both phases, and will be constructed under	
phase 1. This stormwater management system includes an infiltration basin, with catch	
basins and pipe for collection and conveyance. This design will meet the Town of	
Coventry stormwater regulations and also the Rhode Island Stormwater Design and	
Installation Standards Manual (RISDISM) guidelines. Water quality, water quality	
pretreatment, recharge and peak flow attenuation are provided by above ground	
infiltration basin. Provided in the following table is a watershed summary.	

Stormwater Management Plan (SMP) Elements – Minimum Standards

When submitting a SMP,¹ submit <u>four separately bound</u> documents: Appendix A Checklist; Stormwater Site Planning, Analysis and Design Report with Plan Set/Drawings; Soil Erosion and Sediment Control (SESC) Plan, and Post Construction Operations and Maintenance (O&M) Plan. Please refer to <u>Suggestions to Promote Brevity</u>.

<u>Note</u>: All stormwater construction projects <u>must create</u> a Stormwater Management Plan (SMP). However, not every element listed below is required per the <u>RIDEM Stormwater Rules</u> and the <u>RIPDES Construction General Permit (CGP)</u>. This checklist will help identify the required elements to be submitted with an Application for Stormwater Construction Permit & Water Quality Certification.

PART 1. PROJECT AND SITE INFORMATION PROJECT TYPE (Check all that apply) Residential Commercial Federal Retrofit Restoration Road Utility Fill Dredge Mine

 \Box Other (specify):

SITE INFORMATION

☑ Vicinity Map

<u>INITIAL DISCHARGE LOCATION(S)</u>: The WQv discharges to: (You may choose more than one answer if several discharge points are associated with the project.)

□ Groundwater	□ Surface Water	
🖾 GAA	□ Isolated Wetland	□ RIDOT

 ¹ Applications for a Construction General Permit that do not require any other permits from RIDEM and will disturb less than 5 acres over the entire course of the project do not need to submit a SMP. The Appendix A checklist must still be submitted.
 APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST
 A-1
 Updated 09/2020

GA GA	☑ Named Waterbody	□ RIDOT Alteration Permit is Approved
\Box GB	□ Unnamed Waterbody Connected to Named	□ Town
	Waterbody	☑ Other (specify): N/A

<u>ULTIMATE RECEIVING WATERBODY LOCATION(S)</u> : Include pertinent information that applies to both WQ _v and flow from larger storm events including overflows. Choose all that apply, and repeat table for each waterbody.				
□ Groundwater or Disconnected Wetland	□ SRWP			
☑ Waterbody Name: Maple Root Pond	\Box Coldwater \Box Warmwater \boxtimes Unassessed			
⊠ Waterbody ID: RI0006013L-12	\Box 4 th order stream of pond 50 acres or more			
\Box TMDL for:	\Box Watershed of flood prone river (e.g., Pocasset River)			
□ Contributes to a priority outfall listed in the TMDL	\Box Contributes stormwater to a public beach			
⊠ 303(d) list – Impairment(s) for: NON-NATIVE AQUATIC	□ Contributes to shellfishing grounds			
PLANTS				

PROJECT HISTORY				
□ RIDEM Pre- Application Meeting	Meeting Date:	□ Minutes Attached		
Municipal Master Plan Approval	Approval Date:	□ Minutes Attached		
□ Subdivision Suitability Required	Approval #:			
\Box Previous Enforcement Action has been taken on the property	Enforcement #:			
FLOODPLAIN & FLOODWAY See Guidance Pertaining to Floo	dplain and Floodways			
⊠ Riverine 100-year floodplain: FEMA FLOODPLAIN FIRME	<u>TTE</u> has been reviewed and the 100-ye	ar floodplain is on site		
☑ Delineated from FEMA Maps				
<u>NOTE</u> : Per Rule 250-RICR-150-10-8-1.1(B)(5)(d)(3), provide volumetric floodplain compensation calculations for cut and fill/displacement calculated by qualified professional				
Calculated by Professional Engineer				
□ Calculations are provided for cut vs. fill/displacement volumes	□ Calculations are provided for cut vs. fill/displacement volumes Amount of Fill (CY):			
proposed within the 100-year floodplain Amount of Cut (CY):				
□ Restrictions or modifications are proposed to the flow path or velocities in a floodway				
□ Floodplain storage capacity is impacted				
☑ Project area is not within 100-year floodplain as defined by RIDEM				
CRMC JURISDICTION				

□ CRMC Assent required

□ Property subject to a Special Area Management Plan (SAMP). If so, specify which SAMP:

□ Sea level rise mitigation has been designed into this project

LUHPPL IDENTIFICATION - MINIMUM STANDARD 8:

1. OFFICE OF Land Revitalization and Sustainable Materials Management (OLRSMM)

	□ Known or suspected releases of HAZARDOUS MATERIAL are present at the site	RIDEM CONTACT:			
	(Hazardous Material is defined in Rule 1.4(A)(33) of 250-140-30-1 of the RIDEM Pulse and Populations for Investigation and Pomodiation of Hazardous Materials (the				
	Remediation Regulations for Investigation and Remediation of Hazardous Materials (the Remediation Regulations))				
	□ Known or suspected releases of PETROLEUM PRODUCT are present at the site				
	(Petroleum Product as defined in Rule 1.5(A)(84) of 250-140-25-1 of the RIDEM Rules				
	and Regulations for Underground Storage Facilities Used for Regulated Substances and				
	Hazardous Materials)				
	☐ This site is identified on the <u>RIDEM Environmental Resources Map</u> as one of the following regulated facilities	SITE ID#:			
	CFRCLIS/Superfund (NPL)				
	State Hazardous Waste Site (SHWS)				
	Environmental Land Usage Restriction (ELUR)				
	Leaking Underground Storage Task (LUST)				
	Closed Landfill				
Note:	If any boxes in 1 above are checked, the applicant must contact the RIDEM OLRSMM Project	ct Manager associated with the			
	Site to determine if subsurface infiltration of stormwater is allowable for the project. Indicate	e if the infiltration corresponds			
	to "Red," "Yellow" or "Green" as described in Section 3.2.8 of the RISDISM Guidance	e (Subsurface Contamination			
	Guidance). Also, note and reference approval in PART 3, Minimum Standard 2: Groundwar	ter Recharge/Infiltration.			
2.	PER MINIMUM STANDARD 8 of RICR 8.14.C.1-6 "LUHPPLS," THE SITE IS/HAS:	1			
	\Box Industrial Site with RIPDES MSGP, except where No Exposure Certification exists.				
-	http://www.dem.ri.gov/programs/water/permits/ripdes/stormwater/status.php				
-	☐ Auto Fueling Facility (e.g., gas station)				
-	Exterior Vehicles Service, Maintenance, or Equipment Cleaning Area				
	Control Road Salt Storage and Loading Areas (exposed to rainwater)				
	Outdoor Storage and Loading/Unloading of Hazardous Substances				
3.	STORMWATER INDUSTRIAL PERMITTING				
	\Box The site is associated with existing or proposed activities that are considered Land	Activities:			
	Uses with Higher Potential Pollutant Loads (LUHPPLS) (see RICR 8.14.C)	Sector:			
	□ Construction is proposed on a site that is subject to <u>THE MULTI-SECTOR</u>	MSGP permit #			
	GENERAL PERMIT (MSGP) UNDER RULE 31(B)15 OF THE RIPDES				
	Additional stormwater treatment is required by the MSGP	I			
	Explain:				
1					

REDEVELOPMENT STANDARD – MINIMUM STANDARD 6			
\square Pre C	Construction Impervious Area		
	□ Total Pre-Construction Impervious Area (TIA) 0.00		
	Total Site Area (TSA) 2.2 Acres		
	\Box Jurisdictional Wetlands (JW) 0.00		
	\Box Conservation Land (CL) 0.00		
☑ Calculate the Site Size (defined as contiguous properties under same ownership)			
	Site Size $(SS) = (TSA) - (JW) - (CL) = 2.2-0.00-0.00 = 2.2$ act	res	
	\square (TIA) / (SS) = 0/2.2=0	(TIA) / (SS) >0.4?	
\Box YES	S, Redevelopment		

PART 2. LOW IMPACT DEVELOPMENT ASSESSMENT – MINIMUM STANDARD 1 (NOT REQUIRED FOR REDEVELOPMENT OR RETROFITS) This section may be deleted if not required.

Note: A written description must be provided specifying why each method is not being used or is not applicable at the Site. Appropriate answers may include:

- Town requires ... (state the specific local requirement)
- Meets Town's dimensional requirement of ...
- Not practical for site because ...
- Applying for waiver/variance to achieve this (pending/approved/denied)
- Applying for wavier/variance to seek relief from this (pending/approved/denied)

A)	PR	ESERVATION OF UNDISTURBED AREAS, BUFFERS, AND FLOODPLAINS	IF NOT
	\boxtimes	Sensitive resource areas and site constraints are identified (required)	IMPLEMENTED, EXPLAIN HERE
	\boxtimes	Local development regulations have been reviewed (required)	
	\boxtimes	All vegetated buffers and coastal and freshwater wetlands will be protected during and after	
		construction Conservation Development or another site design technique has been incorporated to protect open space and pre-development hydrology. <u>Note</u> : If Conservation Development has been used, check box and skip to Subpart C	Not practical for this site because proposed improvements are necessary
	\boxtimes	As much natural vegetation and pre-development hydrology as possible has been maintained	to meet the project needs
B)	LO NA	CATE DEVELOPMENT IN LESS SENSITIVE AREAS AND WORK WITH THE TURAL LANDSCAPE CONDITIONS, HYDROLOGY, AND SOILS	
	\boxtimes	Development sites and building envelopes have been appropriately distanced from wetlands and waterbodies	
	\boxtimes	Development and stormwater systems have been located in areas with greatest infiltration capacity (e.g., soil groups A and B)	
		Plans show measures to prevent soil compaction in areas designated as Qualified Pervious	Not practical for this site because proposed
	\boxtimes	Development sites and building envelopes have been positioned outside of floodplains	improvements are necessary
	\boxtimes	Site design positions buildings, roadways and parking areas in a manner that avoids impacts to surface water features	to meet the project needs
	\boxtimes	Development sites and building envelopes have been located to minimize impacts to steep slopes (>15%)	
		Other (describe):	
<i>C</i>)	ML	NIMIZE CLEARING AND GRADING	
	\boxtimes	Site clearing has been restricted to minimum area needed for building footprints, development	
		activities, construction access, and safety.	
	\boxtimes	Site has been designed to position buildings, roadways, and parking areas in a manner that	
		minimizes grading (cut and fill quantities)	
		been specified, and such protection extends at least to the tree canopy drip line(s)	No trees existing to protect
		with equivalent	Landscaping proposed
			Landscaping proposed
D)	RE	DUCE IMPERVIOUS COVER	
		Reduced roadway widths (≤ 22 feet for ADT ≤ 400 ; ≤ 26 feet for ADT 400 - 2,000)	
		Reduced driveway areas (length minimized via reduced ROW width (\leq 45 ft.) and/or reduced (or absolute minimum) front yard setback; width minimized to \leq 9 ft. wide one lane; \leq 18 ft.	Not practical for this site
		wide two lanes; shared driveways; pervious surface)	because proposed
		Reduced building footprint: Explain approach:	improvements are
		Reduced sidewalk area (≤ 4 ft. wide; one side of the street; unpaved path; pervious surface)	necessary to meet the
		Reduced cul-de-sacs (radius < 45 ft; vegetated island; alternative turn-around)	project needs
	Ц	Reduced parking lot area: Explain approach	
		Use of pervious surfaces for driveways, sidewalks, parking areas/overflow parking areas, etc.	
		Ordinance)	
		Other (describe):	
E)	DI	SCONNECT IMPERVIOUS AREA	Not practical for this site
		Impervious surfaces have been disconnected, and runoff has been diverted to QPAs to the	because proposed
		maximum extent possible	improvements are
		Residential street edges allow side-of-the-road drainage into vegetated open swales	project needs
		Parking lot landscaping breaks up impervious expanse AND accepts runoff Other (describe):	1 J

F)	MI ⊠	TIGATE RUNOFF AT THE POINT OF GENERATION Small-scale BMPs have been designated to treat runoff as close as possible to the source	
G)	PR	OVIDE LOW-MAINTENANCE NATIVE VEGETATION	
		Low-maintenance landscaping has been proposed using native species and cultivars Plantings of native trees and shrubs in areas previously cleared of native vegetation are shown on site plan Lawn areas have been limited/minimized, and yards have been kept undisturbed to the maximum extent practicable on residential lots	N/A
H)	<i>RE</i>	STORE STREAMS/WETLANDS Historic drainage patterns have been restored by removing closed drainage systems, daylighting buried streams, and/or restoring degraded stream channels and/or wetlands Removal of invasive species Other	N/A

PART 3. SUMMARY OF REMAINING STANDARDS

GROUNDWATER RECHARGE – MINIMUM STANDARD 2

YES	NO								
\boxtimes		The project has been designed to meet the groundwater recharge standard.							
		If "No," the justification for groundwater recharge criterion waiver has been explained in the Narrative (e.g., threat of groundwater contamination or physical limitation), if applicable (see RICR 8.8.D);							
		Your waiver request has been explained in the Narrative, if applicable.							
	\boxtimes	Is this site identified as a Regulated Facility in Part 1, Minimum Standard 8: LUHPPL Identification?							
		If "Yes," has approval for infiltration by the OLRSMM Site Project Manager, per Part 1, Minimum Standard 8, been requested?							

TABLE 2-1: Summary of Recharge (see RISDISM Section 3.3.2) (Add or Subtract Rows as Necessary) N/A									
Design Point	Impervious Area Treated (sq ft)Total Rev Required (cu ft)		LID Stormwater Credits (see RISDISM Section 4.6.1) Portion of Rev directed to a QPA (cu ft)	Recharge Required by Remaining BMPs (cu ft)	Recharge Provided by BMPs (cu ft)				
DP-1: B (Basin)	57,428	2,872		2,872	19,684				
TOTALS:	57,428	2,872		2,872	19,684				

Notes:

1. Only BMPs listed in RISDISM Table 3-5 "List of BMPs Acceptable for Recharge" may be used to meet the recharge requirement.

2. Recharge requirement must be satisfied for each waterbody ID.

Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.): Drainage Narrative and Assessment, Minimum Standard 2

WATE	R QUA	LITY – MINIMUM STANDARD 3
YES	NO	
\boxtimes		Does this project meet or exceed the required water quality volume WQv (see RICR 8.9.E-I)?
\boxtimes		Is the proposed final impervious cover greater than 20% of the disturbed area (see RICR 8.9.E-I)?
\boxtimes		If "Yes," either the Modified Curve Number Method or the Split Pervious/Impervious method in Hydro-CAD was used to calculate WQv; or,
		If "Yes," either TR-55 or TR-20 was used to calculate WQv; and,
		If "No," the project meets the minimum WQv of 0.2 watershed inches over the entire disturbed area.
		Not Applicable
\boxtimes		Does this project meet or exceed the ability to treat required water quality flow WQf (see RICR 8.9.I.1-3)?
\boxtimes		Does this project propose an increase of impervious cover to a receiving water body with impairments?
		If "Yes," please indicate below the method that was used to address the water quality requirements of no further degradation to a low-quality water.
	\boxtimes	RICR 8.36. A Pollutant Loading Analysis is needed and has been completed
\boxtimes		The Water Quality Guidance Document (<u>Water Quality Goals and Pollutant Loading Analysis Guidance for</u> Discharges to Impaired Waters) has been followed as applicable.
	\boxtimes	BMPs are proposed that are on the <u>approved technology list</u> . If "Yes," please provide all required worksheets from the manufacturer.
		Additional pollutant-specific requirements and/or pollutant removal efficiencies are applicable to the site as the result of a TMDL, SAMP, or other watershed-specific requirements. If "Yes," please describe:

TABLE 3-1: Summary of Water Quality (see RICR 8.9)									
Design Point and	Impervious area treated	Total WQ _v Required (cu ft)	LID Stormwater Credits (see RICR 8.18)	Water Quality Treatment Remaining	Water Quality Provided by BMPs				
WB ID	(sq ft)		WQv directed to a QPA (cu ft)	(cu ft)	(cu ft)				
BMP	57,428	4,786		4,786	19,684				
TOTALS:	57,428	4,786		4,786	19,684				
 <u>Notes</u>: 1. Only BMPs listed in RICR 8.20 and 8.25 or the Approved Technologies List of BMPs is Acceptable for Water Quality treatment. 2. For each Design Point, the Water Quality Volume Standard must be met for each Waterbody ID. 									
\bowtie YES \square NO	☑ YES This project has met the setback requirements for each BMP. □ NO If "No," please explain:								
Indicate where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.): Drainage Narrative and Assessment, Minimum Standard 3									

CONVEYANCE AND NATURAL CHANNEL PROTECTION (RICR 8.10) - MINIMUM STANDARD 4									
YES	NO								
	\boxtimes	s this standard waived? If "Yes," please indicate one or more of the reasons below:	\boxtimes Is this						
		The project directs discharge to a large river (i.e., 4th-order stream or larger. See RISDISM Appendix I for State-wide list and map of stream orders), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters.							
		The project is a small facility with impervious cover of less than or equal to 1 acre.							
		The project has a post-development peak discharge rate from the facility that is less than 2 cfs for the 1- year, 24-hour Type III design storm event (prior to any attenuation). (<u>Note</u> : LID design strategies can greatly reduce the peak discharge rate).							
\boxtimes		Conveyance and natural channel protection for the site have been met.							
		If "No,' explain why:							

TABLE 4-1: Summary of Channel Protection Volumes (see RICR 8.10)											
Design Point	Receiving Water Body Name	Coldwater Fishery? (Y/N)	Total CPv Required (cu ft)	Total CPv Provided (cu ft)	Average Release Rate Modeled in the 1-yr storm (cfs)						
DP-1:											
DP-2:											
DP-3:											
DP-4:											
TOTALS:											
Note: The Channel	Protection Volume Standard must be met in ea	ch waterbody I	D.								
□ YES □ NO	The CPv is released at roughly a uniform rate Appendix D of the RISDISM).	over a 24-hour	duration (see ex	amples of sizing	calculations in						
Image: Second											
□ Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).											

OVEF STAN	RBANK DARD	FLOOD PROTECTION (RICR 8.11) AND OTHER POTENTIAL HIGH FLOWS – MINIMUM 5								
YES	NO									
	\boxtimes	Is this standard waived? If yes, please indicate one or more of the reasons below:								
		 The project directs discharge to a large river (i.e., 4th-order stream or larger. See Appendix I for state-wide list and map of stream orders), bodies of water >50.0 acres in surface area (i.e., lakes, ponds, reservoirs), or tidal waters. A Downstream Analysis (see RICR 8.11.D and E) indicates that peak discharge control would not be beneficial or would exacerbate peak flows in a downstream tributary of a particular site (e.g., through coincident peaks). 								
	\boxtimes	Does the project flow to an MS4 system or subject to other stormwater requirements?								
		$\Box \qquad \text{Other (specify):}$								
Note:	The pr volum alread MS4.	pject could be approved by RIDEM but not meet RIDOT or Town standards. RIDOT's regulations indicate that post- s must be less than pre-volumes for the 10-yr storm at the design point entering the RIDOT system. If you have not received approval for the discharge to an MS4, please explain below your strategy to comply with RIDEM and the								
		ndicate below which model was used for your analysis. TR-55 TR-20 HydroCAD Bentley/Haestad Intellisolve								
YES	NO									
		Does the drainage design demonstrate that flows from the 100-year storm event through a BMP will safely manage and convey the 100-year storm? If "No," please explain briefly below and reference where in the application further documentation can be found (i.e., name of report/document, page numbers, appendices, etc.):								
\boxtimes		Do off-site areas contribute to the sub-watersheds and design points? If "Yes,"								
\boxtimes		Are the areas modeled as "present condition" for both pre- and post-development analysis?								
\boxtimes		Are the off-site areas shown on the subwatershed maps?								
\boxtimes		Does the drainage design confirm safe passage of the 100-year flow through the site for off-site runoff?								
	\boxtimes	s a Downstream Analysis required (see RICR 8.11.E.1)?								
\square		Calculate the following:								
		Area of disturbance within the sub-watershed (areas) 2.5 Acres								
		⊠Impervious cover (%) 52%								
	\boxtimes	Is a dam breach analysis required (earthen embankments over six (6) feet in height, or a capacity of 15 acre-feet or more, and contributes to a significant or high hazard dam)?								
\boxtimes		Does this project meet the overbank flood protection standard?								

Table 5-1 Hydraulic Analysis Summary										
Subwatershed	1.2" Peak Flow (cfs)		1-yr Pe (c	ak Flow fs)	10-yr Peak Flow (cfs)		100-yr Peak Flow (cfs)			
(Design Point)	Pre (cfs)	Post (cfs)	Pre (cfs) Post (cfs)		Pre (cfs)	Post (cfs)	Pre (cfs) Post (cf			
South low spot	0.00	0.00	0.00	0.00	0.00	0.00	0.05	0.05		
TOTALS:	0.00	0.00	0.00	0.00	0.00	0.0	0.05	0.05		
 ** Utilize modified curve number method or split pervious /impervious method in HydroCAD. <u>Note</u>: The hydraulic analysis must demonstrate no impact to each individual subwatershed DP unless each DP discharges to the same wetland or water resource. 										
Indicate as fo	llows where th the i	ne pertinent ca items above ar	lculations an e provided	d/or informati	on for	Name of numb	report/docum ers, appendic	ent, page es, etc.		
Existing conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, and water surface elevations showing methodologies used and supporting calculations										
Proposed conditions analysis for each subwatershed, including curve numbers, times of concentration, runoff rates, volumes, water surface elevations, and routing showing the methodologies used and supporting calculations.										
Final sizing calculat area, storage, and ou	Drainage Nar Appendix B	rrative and Ass	sessment							
Stage-storage, inflor retention, or infiltration	area, storage, and outer configuration. Appendix B Stage-storage, inflow and outflow hydrographs for storage facilities (e.g., detention, retention, or infiltration facilities). Drainage Narrative and Assessment									

	Table 5-2 Summary of Best Management Practices											
BMP ID		BMP Type (e.g., bioretention, tree filter)	BMP Functions					Bypass Type	Horizontal Setback Criteria are met per RICR 8.21.B.10, 8.22.D.11, and 8.35.B.4		Criteria are 21.B.10, .35.B.4	
	DP #		Pre- Treatment (Y/N/ NA)	Re _v	WQ _v	CP _v (Y/N/ NA)	Overbank Flood Reduction (Y/N/NA)	External (E) Internal (I) or NA	Yes/ No	Technical Justification (Design Report page number)	Distance Provided	
BMP 1a	А	Sediment Forebay No.	Y	Ν	Y	NA	Ν	NA	Y	Property Line	10 ft	
BMP 1b	A	Infiltration Basin	Y	Y	Y	Y	Y	NA	Y	Property Line	10 ft	

Table 5.3 Summary of Soils to Evaluate Each BMP								
DP #	BMP	BMP Type	Soils Analysis for Each BMP					
APPENDIX A: STORMWATER MANAGEMENT PLAN CHECKLIST								
Updated 09/2020								

	ID	(e.g., bioretention, tree filter)	Test Pit ID# and Ground Elevation		SHWT Elevation	Bottom of Practice	Separation Distance	Hydrologic Soil Group	Exfiltration Rate
			Primary	Secondary	(ft)	Elevation* (ft)	Provided (ft)	(A, B, C, D)	Applied (in/hr)
Р	BMP	Sediment Forebay	TP#4 258	TP#5 258	249.5	252.5	3.0'	А	8.27
Р	BMP	Infiltration Basin	TP#5 258	TP#4 258	249.5	252.5	3.0'	А	8.27

LANI) USES	WITH	I HIGHER POTENTIAL POLLUTANTS LOADS (LUHPPLs) – MINIMUM STANDARD 8
YES	NO	N/A	
		\boxtimes	Describe any LUHPPLs identified in Part 1, Minimum Standard 8, Section 2. If not applicable, continue to Minimum Standard 9.
		\boxtimes	Are these activities already covered under an MSGP? If "No," please explain if you have applied for an MSGP or intend to do so?
		\boxtimes	List the specific BMPs that are proposed for this project that receive stormwater from LUHPPL drainage areas. These BMP types must be listed in RISDISM Table 3-3, "Acceptable BMPs for Use at LUHPPLs." Please list BMPs:
		\boxtimes	Additional BMPs, or additional pretreatment BMP's if any, that meet RIPDES MSGP requirements; Please list BMPs:
			Indicate below where the pertinent calculations and/or information for the above items are provided (i.e., name of report/document, page numbers, appendices, etc.).

ILLICIT DISCHARGES – MINIMUM STANDARD 9

Illicit discharges are defined as unpermitted discharges to Waters of the State that do not consist entirely of stormwater or uncontaminated groundwater, except for certain discharges identified in the RIPDES Phase II Stormwater General Permit.

YES	NO	N/A	
\boxtimes			Have you checked for illicit discharges?
	\boxtimes		Have any been found and/or corrected? If "Yes," please identify.
\boxtimes			Does your report explain preventative measures that keep non-stormwater discharges out of the Waters of the State (during and after construction)?

SOIL EROSION AND SEDIMENT CONTROL (SESC) – MINIMUM STANDARD 10

YES NO N/A

\boxtimes		Have	Have you included a Soil Erosion and Sediment Control Plan Set and/or Complete Construction Plan Set?		
\boxtimes		Have	Have you provided a separately-bound document based upon the SESC Template? If yes, proceed to		
		Minin	Minimum Standard 11 (the following items can be assumed to be addressed).		
		If "No	f "No," include a document with your submittal that addresses the following elements of an SESC Plan:		
		\boxtimes	Soil Erosion and Sediment Control Plan Project Narrative, including a description of how the fifteen		
			(15) Performance Criteria have been met:		
		\boxtimes	Provide Natural Buffers and Maintain Existing Vegetation		
		\boxtimes	Minimize Area of Disturbance		
		\boxtimes	Minimize the Disturbance of Steep Slopes		
		\boxtimes	Preserve Topsoil		
		\boxtimes	Stabilize Soils		
		\boxtimes	Protect Storm Drain Inlets		
		\boxtimes	Protect Storm Drain Outlets		
		Establish Temporary Controls for the Protection of Post-Construction Stormwater Control Measures			
		Establish Perimeter Controls and Sediment Barriers			
		☑ Divert or Manage Run-On from Up-Gradient Areas			
		Properly Design Constructed Stormwater Conveyance Channels			
		\boxtimes	Retain Sediment On-Site		
		\boxtimes	Control Temporary Increases in Stormwater Velocity, Volume, and Peak Flows		
		\boxtimes	Apply Construction Activity Pollution Prevention Control Measures		
		\boxtimes	Install, Inspect, and Maintain Control Measures and Take Corrective Actions		
		Qualified SESC Plan Preparer's Information and Certification			
		\boxtimes	Operator's Information and Certification; if not known at the time of application, the Operator must		
			certify the SESC Plan upon selection and prior to initiating site activities		
		\boxtimes	Description of Control Measures, such as Temporary Sediment Trapping and Conveyance Practices,		
			including design calculations and supporting documentation, as required		

STORMWATER MANAGEMENT SYSTEM OPERATION, MAINTENANCE, AND POLLUTION PREVENTION PLAN – MINIMUM STANDARDS 7 AND 9

Opera	Operation and Maintenance Section			
YES	NO			
\boxtimes		Have you minimized all sources of pollutant contact with stormwater runoff, to the maximum extent practicable?		
\boxtimes		Have you provided a separately-bound Operation and Maintenance Plan for the site and for all of the BMPs, and does it address each element of RICR 8.17 and RISDISM Appendix C and E?		
\boxtimes		Lawn, Garden, and Landscape Management meet the requirements of RISDISM Section G.7? If "No," why not?		
		Is the property owner or homeowner's association responsible for the stormwater maintenance of all BMP's? If "No," you must provide a legally binding and enforceable maintenance agreement (see RISDISM Appendix E, page 26) that identifies the entity that will be responsible for maintenance of the stormwater. Indicate where this agreement can be found in your report (i.e., name of report/document, page numbers, appendices, etc.).		
\boxtimes		Do you anticipate that you will need legal agreements related to the stormwater structures? (e.g. off-site easements, deed restrictions, covenants, or ELUR per the Remediation Regulations). If "Yes," have you obtained them? Or please explain your plan to obtain them:		
	\boxtimes	Is stormwater being directed from public areas to private property? If "Yes," note the following: <u>Note</u> : This is not allowed unless a funding mechanism is in place to provide the finances for the long-term maintenance of the BMP and drainage, or a funding mechanism is demonstrated that can guarantee the long-		

		term maintenance of a stormwater BMP by an individual homeowner.
Pollut	ion Pr	evention Section
\boxtimes		Designated snow stockpile locations?
\boxtimes		Trash racks to prevent floatables, trash, and debris from discharging to Waters of the State?
\boxtimes		Asphalt-only based sealants?
	\boxtimes	Pet waste stations? (<u>Note</u> : If a receiving water has a bacterial impairment, and the project involves housing units, then this could be an important part of your pollution prevention plan).
		Regular sweeping? Please describe:
\boxtimes		De-icing specifications, in accordance with RISDISM Appendix G. (NOTE: If the groundwater is GAA, or this area contributes to a drinking water supply, then this could be an important part of your pollution prevention plan).
		A prohibition of phosphate-based fertilizers? (<u>Note</u> : If the site discharges to a phosphorus impaired waterbody, then this could be an important part of your pollution prevention plan).

PART 4. SUBWATERSHED MAPPING AND SITE-PLAN DETAILS

Existin	Existing and Proposed Subwatershed Mapping (REQUIRED)			
YES	NO			
\boxtimes		Existing and proposed drainage area delineations		
\boxtimes		Locations of all streams and drainage swales		
\boxtimes		Drainage flow paths, mapped according to the DEM <i>Guidance for Preparation of Drainage Area Maps</i> (included in RISDISM Appendix K)		
\boxtimes		Complete drainage area boundaries; include off-site areas in both mapping and analyses, as applicable		
\boxtimes		Logs of borings and/or test pit investigations along with supporting soils/geotechnical report		
\boxtimes		Mapped seasonal high-water-table test pit locations		
\boxtimes		Mapped locations of the site-specific borings and/or test pits and soils information from the test pits at the locations of the BMPs		
\boxtimes		Mapped locations of the BMPs, with the BMPs consistently identified on the Site Construction Plans		
	\boxtimes	Mapped bedrock outcrops adjacent to any infiltration BMP		
\boxtimes		Soils were logged by a:		
		DEM-licensed Class IV soil evaluator Name: Brian King D4010		
		RI-registered P.E. Name:		

Subwatershed and Impervious Area Summary					
Subwatershed (area to each design point)	First Receiving Water ID or MS4	Area Disturbed (Acres)	Existing Impervious (Acres)	Proposed Impervious (Acres)	
Maple Root Pond	RI0006013L-12	2.5	0	1.32	
TOTALS:		2.5	0	1.32	

Site C	onstru	ction Plans (Indicate that the following applicable specifications are provided)
YES	NO	
\boxtimes		Existing and proposed plans (scale not greater than $1'' = 40'$) with North arrow
\boxtimes		Existing and proposed site topography (with 1 or 2-foot contours); 10-foot contours accepted for off-site areas
\boxtimes		Boundaries of existing predominant vegetation and proposed limits of clearing
\boxtimes		Site Location clarification
\boxtimes		Location and field-verified boundaries of resource protection areas such as:
		 freshwater and coastal wetlands, including lakes and ponds
		 coastal shoreline features
		Perennial and intermittent streams, in addition to Areas Subject to Storm Flowage (ASSFs)
\boxtimes		All required setbacks (e.g., buffers, water-supply wells, septic systems)
\boxtimes		Representative cross-section and profile drawings, and notes and details of structural stormwater management
		practices and conveyances (i.e., storm drains, open channels, swales, etc.), which include:
		► Location and size of the stormwater treatment practices (type of practice, depth, area). Stormwater
		treatment practices (BMPs) must have labels that correspond to RISDISM Table 5-2;
		 Design water surface elevations (applicable storms);
		 Structural details of outlet structures, embankments, spillways, stilling basins, grade-control structures,
		conveyance channels, etc.;
		 Existing and proposed structural elevations (e.g., inverts of pipes, manholes, etc.);
		 Location of floodplain and, if applicable, floodway limits and relationship of site to upstream and
		downstream properties or drainage that could be affected by work in the floodplain;
		 Planting plans for structural stormwater BMPs, including species, size, planting methods, and
		maintenance requirements of proposed planting
\boxtimes		Logs of borings and/or test pit investigations along with supporting soils/geotechnical report and corresponding
		water tables
	\boxtimes	Mapping of any OLRSMM-approved remedial actions/systems (including ELURs)
\boxtimes		Location of existing and proposed roads, buildings, and other structures including limits of disturbance;
		 Existing and proposed utilities (e.g., water, sewer, gas, electric) and easements;
		 Location of existing and proposed conveyance systems, such as grass channels, swales, and storm drains,
		and location(s) of final discharge point(s) (wetland, waterbody, etc.);
		 Cross sections of roadways, with edge details such as curbs and sidewalks;
		 Location and dimensions of channel modifications, such as bridge or culvert crossings
	\boxtimes	Locations, cross sections, and profiles of all stream or wetland crossings and their method of stabilization

Appendix B- Stormwater Runoff Calculations (HydroCAD)

2872-March 2025	Type III 24-hr WQ Rainfall=1.20"
Prepared by {enter your company name h	ere} Printed 3/14/2025
HydroCAD® 10.00-26 s/n 08202 © 2020 HydroC	CAD Software Solutions LLC
Time span=0.00-24. Runoff by SCS TR-20 m Reach routing by Dyn-Stor-Ind r	00 hrs, dt=0.01 hrs, 2401 points x 2 nethod, UH=SCS, Split Pervious/Imperv. nethod - Pond routing by Dyn-Stor-Ind method
Subcatchment EA1: EXA To Site Low Spot	Runoff Area=25,645 sf 10.24% Impervious Runoff Depth>0.10" Tc=5.0 min CN=30/98 Runoff=0.07 cfs 0.005 af
Subcatchment EA2: EXA To Site Low Spot	2 Runoff Area=36,183 sf 6.93% Impervious Runoff Depth>0.07" Tc=5.0 min CN=30/98 Runoff=0.07 cfs 0.005 af
Subcatchment EA3: EXB To South PL Flow	Runoff Area=48,508 sf 0.00% Impervious Runoff Depth=0.00" w Length=222' Tc=11.2 min CN=31/0 Runoff=0.00 cfs 0.000 af
Subcatchment PA1: WSD to CB1	Runoff Area=8,767 sf 100.00% Impervious Runoff Depth>0.98" Tc=5.0 min CN=0/98 Runoff=0.23 cfs 0.017 af
Subcatchment PA2: WSD to CB2	Runoff Area=18,809 sf 71.86% Impervious Runoff Depth>0.71" Tc=5.0 min CN=39/98 Runoff=0.35 cfs 0.025 af
SubcatchmentPA3: Phase 1 Bldg	Runoff Area=8,000 sf 100.00% Impervious Runoff Depth>0.98" Tc=5.0 min CN=0/98 Runoff=0.21 cfs 0.015 af
SubcatchmentPA4: Phase 2 Bldg (east)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>0.98" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.011 af
Subcatchment PA5: WSD to Basin 2	Runoff Area=38,304 sf 45.48% Impervious Runoff Depth>0.45" Tc=5.0 min CN=39/98 Runoff=0.45 cfs 0.033 af
Subcatchment PA6: WSD to low spot	Runoff Area=16,538 sf 0.00% Impervious Runoff Depth=0.00" Tc=5.0 min CN=39/0 Runoff=0.00 cfs 0.000 af
SubcatchmentPA7: Phase 2 Bldg (west)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>0.98" Tc=5.0 min CN=0/98 Runoff=0.16 cfs 0.011 af
Subcatchment PA8: WSD to Yard Drain	Runoff Area=7,918 sf 36.11% Impervious Runoff Depth>0.36" Tc=5.0 min CN=39/98 Runoff=0.07 cfs 0.005 af
Reach EA: SOUTHERLY PROPERTY LINE	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach PA: SOUTHERLY PROPERTY LINE	Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond BMP: Basin Discarded=0.50 cfs	Peak Elev=253.06' Storage=1,003 cf Inflow=1.77 cfs 0.090 af 0.090 af Primary=0.00 cfs 0.000 af Outflow=0.50 cfs 0.090 af
Pond CB1: CB1, RIM 258.75 18.0" Round	Peak Elev=255.58' Inflow=0.23 cfs 0.017 af Culvert n=0.013 L=75.0' S=0.0000 '/' Outflow=0.23 cfs 0.017 af
Pond CB2: CB2, RIM 259	Peak Elev=255.61' Inflow=0.35 cfs 0.025 af culvert_n=0.013_L=124.3' S=0.0000 '/' Outflow=0.35 cfs_0.025 af

2872-March 2025

Type III 24-hr WQ Rainfall=1.20" Printed 3/14/2025

Prepared by {enter your company name here}	Printed	3/14/2025
HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC		

Pond DMH1: DMH, RIM 260.1 18.0" Round C	Peak Elev=255.56' Inflow=1.02 cfs 0.074 af Culvert n=0.013 L=108.0' S=0.0093 '/' Outflow=1.02 cfs 0.074 af
Pond LP1: Low Point 1	Peak Elev=257.14' Storage=216 cf Inflow=0.07 cfs 0.005 af Outflow=0.00 cfs 0.000 af
Pond LP2: Low Point 2	Peak Elev=257.09' Storage=206 cf Inflow=0.07 cfs 0.005 af Outflow=0.00 cfs 0.000 af
Pond LP3: Low Point 3	Peak Elev=257.10' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond LP4: Low Point 4 (Post-Devel)	Peak Elev=257.00' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond S: Sed Forebay 1	Peak Elev=255.03' Storage=1,230 cf Inflow=1.63 cfs 0.118 af Outflow=1.77 cfs 0.090 af
Pond YD: Yard Drain, RIM 258.25 10.0" Round C	Peak Elev=256.23' Inflow=0.07 cfs 0.005 af Culvert n=0.013 L=222.0' S=0.0011 '/' Outflow=0.07 cfs 0.005 af

2872-March 2025	Type III 24-hr 1 Year Rainfall=2.70"
Prepared by {enter your company name here}	Printed 3/14/2025
HvdroCAD® 10.00-26 s/n 08202 © 2020 HvdroCAD Software Solution	ons LLC

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment EA1: EXA To Site Low Spot Runoff Area=25,645 sf 10.24% Impervious Runoff Depth=0.00" Tc=5.0 min CN=37 Runoff=0.00 cfs 0.000 af Subcatchment EA2: EXA To Site Low Spot 2 Runoff Area=36,183 sf 6.93% Impervious Runoff Depth=0.00" Tc=5.0 min CN=35 Runoff=0.00 cfs 0.000 af Runoff Area=48,508 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment EA3: EXB To South PL Flow Length=222' Tc=11.2 min CN=31 Runoff=0.00 cfs 0.000 af Runoff Area=8,767 sf 100.00% Impervious Runoff Depth>2.47" Subcatchment PA1: WSD to CB1 Tc=5.0 min CN=98 Runoff=0.54 cfs 0.041 af Runoff Area=18,809 sf 71.86% Impervious Runoff Depth>1.09" Subcatchment PA2: WSD to CB2 Tc=5.0 min CN=81 Runoff=0.56 cfs 0.039 af Runoff Area=8,000 sf 100.00% Impervious Runoff Depth>2.47" Subcatchment PA3: Phase 1 Bldg Tc=5.0 min CN=98 Runoff=0.50 cfs 0.038 af Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>2.47" Subcatchment PA4: Phase 2 Bldg (east) Tc=5.0 min CN=98 Runoff=0.37 cfs 0.028 af Runoff Area=38,304 sf 45.48% Impervious Runoff Depth>0.41" Subcatchment PA5: WSD to Basin 2 Tc=5.0 min CN=66 Runoff=0.30 cfs 0.030 af Runoff Area=16,538 sf 0.00% Impervious Runoff Depth=0.00" Subcatchment PA6: WSD to low spot Tc=5.0 min CN=39 Runoff=0.00 cfs 0.000 af Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>2.47" Subcatchment PA7: Phase 2 Bldg (west) Tc=5.0 min CN=98 Runoff=0.37 cfs 0.028 af Runoff Area=7,918 sf 36.11% Impervious Runoff Depth>0.23" Subcatchment PA8: WSD to Yard Drain Tc=5.0 min CN=60 Runoff=0.02 cfs 0.004 af Inflow=0.00 cfs 0.000 af **Reach EA: SOUTHERLY PROPERTY LINE** Outflow=0.00 cfs 0.000 af Inflow=0.00 cfs 0.000 af Reach PA: SOUTHERLY PROPERTY LINE Outflow=0.00 cfs 0.000 af Peak Elev=253.50' Storage=2,103 cf Inflow=2.70 cfs 0.180 af Pond BMP: Basin Discarded=0.65 cfs 0.180 af Primary=0.00 cfs 0.000 af Outflow=0.65 cfs 0.180 af Peak Elev=255.80' Inflow=0.54 cfs 0.041 af Pond CB1: CB1, RIM 258.75 18.0" Round Culvert n=0.013 L=75.0' S=0.0000 '/' Outflow=0.54 cfs 0.041 af Peak Elev=255.81' Inflow=0.56 cfs 0.039 af Pond CB2: CB2, RIM 259 18.0" Round Culvert n=0.013 L=124.3' S=0.0000 '/' Outflow=0.56 cfs 0.039 af

2872-March 2025

Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here}	Printed 3/14/2025
HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC	

Pond DMH1: DMH, RIM 260.1 18.0" Round Culv	Peak Elev=255.76' Inflow=1.98 cfs 0.150 af vert n=0.013 L=108.0' S=0.0093 '/' Outflow=1.98 cfs 0.150 af
Pond LP1: Low Point 1	Peak Elev=257.00' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond LP2: Low Point 2	Peak Elev=257.00' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond LP3: Low Point 3	Peak Elev=257.10' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond LP4: Low Point 4 (Post-Devel)	Peak Elev=257.00' Storage=0 cf Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond S: Sed Forebay 1	Peak Elev=255.04' Storage=1,230 cf Inflow=2.62 cfs 0.208 af Outflow=2.70 cfs 0.180 af
Pond YD: Yard Drain, RIM 258.25 10.0" Round Culv	Peak Elev=256.12' Inflow=0.02 cfs 0.004 af vert n=0.013 L=222.0' S=0.0011 '/' Outflow=0.02 cfs 0.004 af

Summary for Subcatchment EA1: EXA To Site Low Spot 1

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN	Description		
	910	39	>75% Gras	s cover, Go	ood, HSG A
	22,108	30	Woods, Go	od, HSG A	N
*	2,627	98	Paved park	ing, HSG A	A (off-site)
	25,645	37	Weighted A	verage	
	23,018	30	89.76% Per	vious Area	a
	2,627	98	10.24% Imp	ervious Are	rea
	Tc Length	Slop	e Velocity	Capacity	Description
(n	nin) (feet)	(ft/1	ft) (ft/sec)	(cfs)	
	5.0				Direct Entry,

Summary for Subcatchment EA2: EXA To Site Low Spot 2

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN	Description		
	33,674	30	Woods, Go	od, HSG A	
*	2,509	98	Paved park	ing, HSG A	(off-site)
	36,183	35	Weighted A	verage	
	33,674	30	93.07% Pe	vious Area	
	2,509	98	6.93% Impe	ervious Area	а
Т	c Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/f	t) (ft/sec)	(cfs)	
5.)				Direct Entry,

Summary for Subcatchment EA3: EXB To South PL

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

Area (s	f) CN	Description
45,55	8 30	Woods, Good, HSG A
2,95	0 39	>75% Grass cover, Good, HSG A
48,50	8 31	Weighted Average
48,50	8 31	100.00% Pervious Area
Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.9	32	0.0780	0.11		Sheet Flow, A
					Woods: Light underbrush n= 0.400 P2= 3.30"
6.3	190	0.0100	0.50		Shallow Concentrated Flow, B
					Woodland Kv= 5.0 fps
11.2	222	Total			

Summary for Subcatchment PA1: WSD to CB1

Runoff = 0.54 cfs @ 12.07 hrs, Volume= 0.041 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

Area (sf)	CN	Description		
8,767	98	Paved park	ing, HSG A	Α
8,767	98	100.00% In	pervious A	Area
Tc Length (min) (feet)	Slop (ft/	e Velocity ft) (ft/sec)	Capacity (cfs)	Description
5.0				Direct Entry,

Summary for Subcatchment PA2: WSD to CB2

Runoff = 0.56 cfs @ 12.08 hrs, Volume= 0.039 af, Depth> 1.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

Area (sf)	CN	Description	
13,517	98	Paved parking, HSG A	
5,292	39	>75% Grass cover, Good, HSG A	
18,809	81	Weighted Average	_
5,292	39	28.14% Pervious Area	
13,517	98	71.86% Impervious Area	
Tc Length (min) (feet)	Slop (ft/	be Velocity Capacity Description (ft) (ft/sec) (cfs)	_
5.0		Direct Entry,	

Summary for Subcatchment PA3: Phase 1 Bldg

Runoff = 0.50 cfs @ 12.07 hrs, Volume= 0.038 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Area	(sf) CN	Description		
8,	000 98	Roofs, HSC	βA	
8,	000 98	100.00% In	npervious A	Area
Tc Le _(min) (ngth Slo feet) (ft	pe Velocity /ft) (ft/sec)	Capacity (cfs)	Description
5.0				Direct Entry,

Summary for Subcatchment PA4: Phase 2 Bldg (east)

Runoff = 0.37 cfs @ 12.07 hrs, Volume= 0.028 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

A	rea (sf)	CN	Description				
	6,000	98	Roofs, HSC	θA			
	6,000	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	e Velocity) (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		

Summary for Subcatchment PA5: WSD to Basin 2

Runoff	=	0.30 cfs @	12.10 hrs.	Volume=	0.030 af.	Depth>	0.41"
i tunion		0.00 013 (0)	12.101113,	Volume-	0.000 ar,	Dopuis	0.41

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN	Description					
	8,713	98	Paved parkir	ng, HSG A	Α			
	20,883	39	>75% Grass	cover, Go	ood, HSG A			
*	6,206	98	Bituminous C	Grindings ((compacted)			
*	2,502	98	Harkney Hill	Rd paver	ment, HSG A			
	38,304	66	Weighted Av	erage				
	20,883	39	54.52% Perv	54.52% Pervious Area				
	17,421	98	45.48% Impe	ervious Are	rea			
(mi	Tc Length in) (feet)	Slop (ft/	e Velocity ft) (ft/sec)	Capacity (cfs)	Description			
5	5.0				Direct Entry,			

Summary for Subcatchment PA6: WSD to low spot

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Area (sf)	CN	Description						
16,538	39	39 >75% Grass cover, Good, HSG A						
16,538	39	39 100.00% Pervious Area						
Tc Length (min) (feet)	Slop (ft/1	e Velocity ft) (ft/sec)	Capacity (cfs)	/ Description				
5.0				Direct Entry,				

Summary for Subcatchment PA7: Phase 2 Bldg (west)

Runoff = 0.37 cfs @ 12.07 hrs, Volume= 0.028 af, Depth> 2.47"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

A	rea (sf)	CN	Description				
	6,000	98	Roofs, HSC	βA			
	6,000	98	98 100.00% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		

Summary for Subcatchment PA8: WSD to Yard Drain

Runoff = 0.02 cfs @ 12.30 hrs, Volume= 0.004 af, Depth> 0.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Type III 24-hr 1 Year Rainfall=2.70"

	Area (sf)	CN	Description						
*	2,634	98	Roadway (c	off-site					
*	225	98	Driveway (o	ff-site)					
	5,059	39	>75% Grass	5% Grass cover, Good, HSG A					
	7,918	60	Weighted A	Weighted Average					
	5,059	39	63.89% Per	33.89% Pervious Area					
	2,859	98	36.11% Imp	ervious Are	rea				
(mi	Tc Length in) (feet)	Slop (ft/1	e Velocity t) (ft/sec)	Capacity (cfs)	Description				
5	5.0				Direct Entry,				

Summary for Reach EA: SOUTHERLY PROPERTY LINE

Inflow Area	a =	2.533 ac,	4.65% Impervious,	Inflow Depth = 0.0	00" for 1 Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af,	Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2

Summary for Reach PA: SOUTHERLY PROPERTY LINE

Inflow Area	a =	2.533 ac, 56	6.70% Impe	ervious, Ir	nflow Depth =	0.0	0" for 1 Y	ear event
Inflow	=	0.00 cfs @	0.00 hrs, '	Volume=	0.000) af		
Outflow	=	0.00 cfs @	0.00 hrs, 1	Volume=	0.000) af,	Atten= 0%,	Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2

Summary for Pond BMP: Basin

Inflow Area	=	2.153 ac, 6	6.70% Imp	ervious, Inflow [Depth >	1.00"	for 1 Ye	ar event	
Inflow	=	2.70 cfs @	12.07 hrs,	Volume=	0.180	af			
Outflow	=	0.65 cfs @	12.48 hrs,	Volume=	0.180	af, Atte	n= 76%,	Lag= 24.4 m	nin
Discarded	=	0.65 cfs @	12.48 hrs,	Volume=	0.180	af			
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	0.000	af			

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 253.50' @ 12.48 hrs Surf.Area= 2,749 sf Storage= 2,103 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 24.4 min (866.6 - 842.2)

Volume	Inver	t Avail.Sto	rage Storag	e Description	
#1	252.50	' 24,2	78 cf Custo	m Stage Data (P	rismatic)Listed below (Recalc)
Elevation (feet	n S	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
252.50 253.00 254.00 255.00 256.00 257.00	0 0 0 0 0 0	1,256 2,218 3,287 6,290 7,918 9,610	0 869 2,753 4,789 7,104 8,764	0 869 3,621 8,410 15,514 24,278	
Device	Routing	Invert	Outlet Devic	es	
#1	Primary	256.50'	15.0' long > Head (feet) 2.50 3.00 3 Coef. (Englis 2.65 2.67 2	5.0' breadth Br 0.20 0.40 0.60 3.50 4.00 4.50 5 sh) 2.34 2.50 2. 2.66 2.68 2.70 2	oad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 1.80 2.00 5.00 5.50 .70 2.68 2.66 2.65 2.65 2.65 2.74 2.79 2.88
#2	Discarded	252.50'	8.270 in/hr l Conductivity	Exfiltration over to Groundwater	Surface area Elevation = 249.50'

Discarded OutFlow Max=0.65 cfs @ 12.48 hrs HW=253.50' (Free Discharge) **2=Exfiltration** (Controls 0.65 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=252.50' TW=0.00' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Controls 0.00 cfs)

Summary for Pond CB1: CB1, RIM 258.75

 Inflow Area =
 0.201 ac,100.00% Impervious, Inflow Depth > 2.47" for 1 Year event

 Inflow =
 0.54 cfs @ 12.07 hrs, Volume=
 0.041 af

 Outflow =
 0.54 cfs @ 12.07 hrs, Volume=
 0.041 af, Atten= 0%, Lag= 0.0 min

 Primary =
 0.54 cfs @ 12.07 hrs, Volume=
 0.041 af

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 255.80' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	255.00'	18.0" Round Culvert L= 75.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 255.00' / 255.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.54 cfs @ 12.07 hrs HW=255.79' TW=255.76' (Dynamic Tailwater) -1=Culvert (Outlet Controls 0.54 cfs @ 0.83 fps)

Summary for Pond CB2: CB2, RIM 259

Inflow Are	ea =	0.432 ac, 71.86% Impervious,	nflow Depth > 1.09	" for 1 Year event
Inflow	=	0.56 cfs @ 12.08 hrs, Volume=	0.039 af	
Outflow	=	0.56 cfs @ 12.08 hrs, Volume=	0.039 af, <i>A</i>	Atten= 0%, Lag= 0.0 min
Primary	=	0.56 cfs @ 12.08 hrs, Volume=	0.039 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 255.81' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	255.00'	18.0" Round Culvert
	-		L= 124.3' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 255.00' / 255.00' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.56 cfs @ 12.08 hrs HW=255.81' TW=255.76' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.56 cfs @ 0.84 fps)

Summary for Pond DMH1: DMH, RIM 260.1

Inflow Area	=	1.136 ac,	79.09% Imper	vious, Inflow D	Depth > 1.5	9" for 1 Y	ear event
Inflow	=	1.98 cfs @	12.07 hrs, V	/olume=	0.150 af		
Outflow	=	1.98 cfs @	12.07 hrs, V	/olume=	0.150 af,	Atten= 0%,	Lag= 0.0 min
Primary	=	1.98 cfs @	12.07 hrs, V	/olume=	0.150 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 255.76' @ 12.07 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	255.00'	18.0" Round Culvert
			L= 108.0 CPP, projecting, no neadwall, Ke= 0.900

Inlet / Outlet Invert= 255.00' / 254.00' S= 0.0093 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=1.97 cfs @ 12.07 hrs HW=255.76' TW=255.04' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.97 cfs @ 3.22 fps)

Summary for Pond LP1: Low Point 1

Inflow Area	=	0.589 ac, 1	0.24% Impervious,	Inflow Depth =	0.00" for	1 Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af, Atten= (0%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 257.00' @ 0.00 hrs Surf.Area= 845 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Inv	ert Avail.	Storage	Storage	e Description	
#1	257.0	00'	7,902 cf	Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc. (cubic	Store -feet)	Cum.Store (cubic-feet)	
257.0 258.2	00 20	845 12,325		0 7,902	0 7,902	
Device	Routing	Inv	ert Outle	t Device	es	
#1	Primary	258.7	10' Cust Head Widtl	om Wei I (feet) (n (feet)	r/Orifice, Cv= 2 . 0.00	.62 (C= 3.28)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=257.00' TW=257.00' (Dynamic Tailwater)

Summary for Pond LP2: Low Point 2

Inflow Area	=	1.419 ac,	8.31% Impervious,	Inflow Depth = 0	.00" for 1 Year event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	, Atten= 0%, Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 257.00' @ 0.00 hrs Surf.Area= 1,445 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Volume	Inv	ert Ava	il.Storage	Storage D	escription	
#1	257.0	00'	10,322 cf	Custom S	Stage Data (Pr	r ismatic) Listed below (Recalc)
Elevatio (feet	n t)	Surf.Area (sq-ft)	Inc (cubi	.Store c-feet)	Cum.Store (cubic-feet)	
257.0 257.9	0 0	1,445 21,492	1	0 0,322	0 10,322	
Device	Routing	Ir	vert Outle	et Devices		
#1	Primary	257	7.50' Cus Head Widt	tom Weir/(d (feet) 0.0 h (feet) 15	Drifice, Cv= 2. 00 0.90 0.00 60.00	62 (C= 3.28)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=257.00' TW=257.10' (Dynamic Tailwater) ☐ 1=Custom Weir/Orifice (Controls 0.00 cfs)

Summary for Pond LP3: Low Point 3

Inflow Area	a =	2.533 ac,	4.65% Impervious, I	Inflow Depth = 0).00" for 1 Y	ear event
Inflow	=	0.00 cfs @	0.00 hrs, Volume=	0.000 at	f	
Outflow	=	0.00 cfs @	0.00 hrs, Volume=	: 0.000 at	f, Atten= 0%,	Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume=	: 0.000 at	f	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 257.10' @ 0.00 hrs Surf.Area= 1,432 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Inv	ert Avail.S	torage S	torage D	escription	
#1	257.	10' 2,	735 cf C	ustom S	tage Data (Pi	rismatic)Listed below (Recalc)
Elevatio	on et)	Surf.Area (sq-ft)	Inc.St (cubic-fe	ore eet)	Cum.Store (cubic-feet)	
257.1 257.4	0 10	1,432 16,803	2,	0 735	0 2,735	
Device	Routing	Inver	t Outlet I	Devices		
#1	Primary	257.40	' Custor Head (i Width (n Weir/C eet) 0.0 feet) 300	Drifice, Cv= 2. 0 0.10 0.00 325.00	62 (C= 3.28)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=257.10' TW=0.00' (Dynamic Tailwater) -1=Custom Weir/Orifice (Controls 0.00 cfs)

Summary for Pond LP4: Low Point 4 (Post-Devel)

Inflow Area	=	0.380 ac, 0	0.00% Impervious,	Inflow Depth = (0.00" for 1 Y	ear event
Inflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af	
Outflow	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af, Atten= 0%,	Lag= 0.0 min
Primary	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 a	af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 257.00' @ 0.00 hrs Surf.Area= 732 sf Storage= 0 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no inflow)

Volume	Inv	<u>ert Avail.St</u>	orage Stora	ge Description	
#1	257.0	00' 1,3	302 cf Custo	om Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
257.0 257.5	00 50	732 4,475	0 1,302	0 1,302	
Device	Routing	Invert	Outlet Devi	ces	
#1	Primary	257.50	Custom W Head (feet) Width (feet)	eir/Orifice, Cv= 2. 0.00 0.10) 300.00 325.00	62 (C= 3.28)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=257.00' TW=0.00' (Dynamic Tailwater)

Summary for Pond S: Sed Forebay 1

Inflow Area	=	2.153 ac, 6	6.70% Impe	ervious,	Inflow Depth	> 1.16	6" for 1 Y	'ear event
Inflow	=	2.62 cfs @	12.08 hrs,	Volume	= 0.2	208 af		
Outflow	=	2.70 cfs @	12.07 hrs,	Volume	= 0.1	80 af, A	Atten= 0%,	Lag= 0.0 min
Primary	=	2.70 cfs @	12.07 hrs,	Volume	= 0.1	80 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 255.04' @ 12.07 hrs Surf.Area= 1,443 sf Storage= 1,230 cf

Plug-Flow detention time= 105.7 min calculated for 0.180 af (86% of inflow) Center-of-Mass det. time= 42.5 min (842.2 - 799.7)

Volume	Invert	Avail.Storage	Storage D	escription	
#1	253.00'	1,230 cf	.75 (Prism	natic) Listed bel	ow (Recalc)
Elevation	Surf.A	rea Inc	c.Store	Cum.Store	
(leet) 253.00	(SC 1.(1-11) (Cubi 016	<u>c-ieet)</u> 0		
254.00	1,4	443	1,230	1,230	

Type III 24-hr 1 Year Rainfall=2.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	255.00'	135.0' long x 0.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef, (English) 2.80 2.92 3.08 3.30 3.32

Primary OutFlow Max=2.68 cfs @ 12.07 hrs HW=255.04' TW=253.07' (Dynamic Tailwater) **1=Broad-Crested Rectangular Weir** (Weir Controls 2.68 cfs @ 0.54 fps)

Summary for Pond YD: Yard Drain, RIM 258.25

Inflow Area	ı =	0.182 ac,	36.11% Impe	ervious,	Inflow Depth >	· 0.23"	for 1 Y	ear event
Inflow	=	0.02 cfs @	12.30 hrs,	Volume	= 0.00	4 af		
Outflow	=	0.02 cfs @	12.30 hrs,	Volume	= 0.00	4 af, At	tten= 0%,	Lag= 0.0 min
Primary	=	0.02 cfs @	12.30 hrs,	Volume	= 0.00	4 af		-

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 256.12' @ 12.30 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	256.00'	10.0" Round Culvert L= 222.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 256.00' / 255.75' S= 0.0011 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.55 sf

Primary OutFlow Max=0.02 cfs @ 12.30 hrs HW=256.12' TW=255.50' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.02 cfs @ 0.59 fps)

_

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
252.50	1,256	0	255.15	6,534	9,371	
252.55	1,352	65	255.20	6,616	9,700	
252.60	1,448	135	255.25	6,697	10,033	
252.65	1,545	210	255.30	6,778	10,370	
252.70	1,641	290	255.35	6,860	10,711	
252.75	1,737	374	255.40	6,941	11,056	
252.80	1,833	463	255.45	7,023	11,405	
252.85	1,929	557	255.50	7,104	11,758	
252.90	2,026	656	255.55	7,185	12,115	
252.95	2,122	760	255.60	7,267	12,477	
253.00	2,218	869	255.65	7,348	12,842	
253.05	2,271	981	255.70	7,430	13,211	
253.10	2,325	1,096	255.75	7,511	13,585	
253.15	2,378	1,213	255.80	7,592	13,962	
253.20	2,432	1,333	255.85	7,674	14,344	
253.25	2,485	1,456	255.90	7,755	14,730	
253.30	2,539	1,582	255.95	7,837	15,120	
253.35	2,592	1,710	256.00	7,918	15,514	
253.40	2,646	1,841	256.05	8,003	15,912	
253.45	2,699	1,975	256.10	8,087	16,314	
253.50	2,753	2,111	256.15	8,172	16,720	
253.55	2,806	2,250	256.20	8,256	17,131	
253.60	2,859	2,392	256.25	8,341	17,546	
253.65	2,913	2,536	256.30	8,426	17,965	
253.70	2,966	2,683	256.35	8,510	18,388	
253.75	3,020	2,833	256.40	8,595	18,816	
253.80	3,073	2,985	256.45	8,679	19,248	
253.85	3,127	3,140	256.50	8,764	19,684 🤶	-WO and
253.90	3,180	3,298	256.55	8,849	20,124	
253.95	3,234	3,458	256.60	8,933	20,569	Recharge
254.00	3,287	3,621	256.65	9,018	21,018	liteonargo
254.05	3,437	3,789	256.70	9,102	21,471	Volume
254.10	3,587	3,965	256.75	9,187	21,928	Volumo
254.15	3,737	4,148	256.80	9,272	22,389	
254.20	3,888	4,338	256.85	9,356	22,855	
254.25	4,038	4,537	256.90	9,441	23,325	
254.30	4,188	4,742	256.95	9,525	23,799	
254.35	4,338	4,955	257.00	9,610	24,278	
254.40	4,488	5,176				
254.45	4,638	5,404				
254.50	4,789	5,640				
254.55	4,939	5,883				
254.60	5,089	6,134				
254.65	5,239	6,392				
254.70	5,389	6,658				
254.75	5,539	6,931				
254.80	5,689	7,212				
254.85	5,840	7,500				
254.90	5,990	7,796				
254.95	6,140	8,099				
255.00	6,290	8,410				
255.05	6,371	8,726				
255.10	6,453	9,047				

Stage-Area-Storage for Pond BMP: Basin

Prepared by {enter	your company name here}
HydroCAD® 10.00-26	s/n 08202 © 2020 HydroCAD Software Solutions LL

Elevation	Surface	Storage	Elevation	Surface	Storage
	(sq-ft)	(cubic-reet)		<u>(sq-π)</u>	
257.00	845	0	258.06	10,986	6,270
257.02	1,036	19	258.08	11,177	6,492
257.04	1,228	41	258.10	11,368	6,717
257.06	1,419	68	258.12	11,560	6,947
257.08	1,610	98	258.14	11,751	7,180
257.10	1,802	132	258.16	11,942	7,417
257.12	1,993	170	258.18	12,134	7,657
257.14	2,184	212	258.20	12,325	7,902
257.16	2,376	258	258.22	12,325	7,902
257.18	2,567	307	258.24	12,325	7,902
257.20	2,758	360	258.26	12,325	7,902
257.22	2,950	417	258.28	12,325	7,902
257.24	3,141	478	258.30	12,325	7,902
257.26	3,332	543			
257.28	3,524	612			
257.30	3,715	684			
257.32	3,906	760			
257.34	4,098	840			
257.36	4,289	924			
257.38	4,480	1,012			
257.40	4,672	1,103			
257.42	4,863	1,199			
257.44	5,054	1,298			
257.46	5,246	1,401			
257.48	5,437	1,508			
257.50	5,628	1,618			
257.52	5,820	1,733			
257.54	6,011	1,851			
257.56	6,202	1,973			
257.58	6,394	2,099			
257.60	6,585	2,229			
257.62	6,776	2,363			
257.64	6,968	2,500			
257.66	7,159	2,641			
257.68	7,350	2,786			
257.70	7,542	2,935			
257.72	7,733	3,088			
257.74	7,924	3,245			
257.76	8,116	3,405			
257.78	8,307	3,569			
257.80	8,498	3,737			
257.82	8,690	3,909			
257.84	8,881	4,085			
257.80	9,072	4,204			
257.88	9,204	4,448			
257.90	9,455	4,035			
201.92	9,040	4,820			
201.94	9,030 10,020	5,UZ I 5 000			
207.90	10,029	0,∠∠U 5 400			
257.90	10,220	0,422 5 600			
200.00	10,412	0,020 5 929			
250.02	10,003	5,050 6 052			
200.04	10,734	0,032			

Stage-Area-Storage for Pond LP1: Low Point 1

Prepared by {enter	your company name here}	
HydroCAD® 10.00-26	s/n 08202 © 2020 HydroCAD Software Solutions L	LC

Elevation	Surface	Storage	Elevation	Surface	Storage
257.00	<u>(Sq-II)</u> 1 445		258.06	21 /02	10 322
257.00	1,445	33	258.00	21,492	10,322
257.02	2,336	55 76	258.10	21,492	10,322
257.04	2,000	127	258 12	21,402	10,022
257.08	3 227	187	258 14	21,402	10,022
257.10	3 672	256	258 16	21,402	10,022
257 12	4 118	334	258.18	21 492	10,322
257.14	4,563	421	258.20	21,492	10.322
257.16	5.009	516	258.22	21,492	10.322
257.18	5,454	621	258.24	21,492	10,322
257.20	5,900	734	258.26	21,492	10,322
257.22	6,345	857	258.28	21,492	10,322
257.24	6,791	988	258.30	21,492	10,322
257.26	7,236	1,129	258.32	21,492	10,322
257.28	7,682	1,278	258.34	21,492	10,322
257.30	8,127	1,436	258.36	21,492	10,322
257.32	8,573	1,603	258.38	21,492	10,322
257.34	9,018	1,779	258.40	21,492	10,322
257.36	9,464	1,964			
257.38	9,909	2,157			
257.40	10,355	2,360			
237.42	10,800	2,572			
207.44	11,240	2,792			
257.40	12 137	3,021			
257.50	12,137	3,200			
257.52	13 028	3 763			
257.54	13,473	4.028			
257.56	13.919	4.302			
257.58	14,364	4,585			
257.60	14,810	4,876			
257.62	15,255	5,177			
257.64	15,701	5,487			
257.66	16,146	5,805			
257.68	16,592	6,132			
257.70	17,037	6,469			
257.72	17,483	6,814			
257.74	17,928	7,168			
257.70	18,374	7,531			
201.10	10,019	7,903			
257.80	19,205	0,204 8 674			
257.82	20 156	9 072			
257.86	20,100	9 480			
257.88	21.047	9.896			
257.90	21,492	10.322			
257.92	21,492	10,322			
257.94	21,492	10,322			
257.96	21,492	10,322			
257.98	21,492	10,322			
258.00	21,492	10,322			
258.02	21,492	10,322			
258.04	21,492	10,322			

Stage-Area-Storage for Pond LP2: Low Point 2

_

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond LP3: Low Point 3

Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)
257.10	1,432	0
257.11	1,944	17
257.12	2,457	39
257.13	2,969	66
257.14	3,481	98
257.15	3,994	130
257.10	4,500	226
257.17	5,013	220
257 19	6 043	336
257.20	6,556	399
257.21	7,068	468
257.22	7,580	541
257.23	8,093	619
257.24	8,605	703
257.25	9,118	791
257.26	9,630	885
257.27	10,142	984
257.28	10,655	1,088
257.29	11,167	1,197
257.30	11,079	1,311
207.01	12,192	1,430
257.32	13 216	1,555
257.34	13 729	1 819
257.35	14.241	1,959
257.36	14,754	2,104
257.37	15,266	2,254
257.38	15,778	2,409
257.39	16,291	2,570
257.40	16,803	2,735
257.41	16,803	2,735
257.42	16,803	2,735
257.43	16,803	2,735
257.44	10,803	2,735
257.45	16,003	2,735
257.40	16 203	2,735
257 48	16 803	2 735
257.49	16.803	2,735
257.50	16,803	2,735

Stage-Area-Storage for Pond LP4: Low Point 4 (Post-Devel)

Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
257.00	732	0	257.53	4,475	1,302
257.01	807	8	257.54	4,475	1,302
257.02	882	16	257.55	4,475	1,302
257.03	957	25	257.56	4,475	1,302
257.04	1,031	35	257.57	4,475	1,302
257.05	1,106	46	257.58	4,475	1,302
257.06	1,181	57	257.59	4,475	1,302
257.07	1,256	70	257.60	4,475	1,302
257.08	1,331	83			
257.09	1,406	96			
257.10	1,481	111			
257.11	1,555	126			
257.12	1,630	142			
257.13	1,705	158			
257.14	1,780	170			
257.15	1,000	194			
257.10	1,930	213			
257.17	2,005	253			
257.10	2,073	233			
257.20	2,104	296			
257 21	2,220	319			
257.22	2.379	342			
257.23	2.454	366			
257.24	2,529	391			
257.25	2,604	417			
257.26	2,678	443			
257.27	2,753	471			
257.28	2,828	498			
257.29	2,903	527			
257.30	2,978	556			
257.31	3,053	587			
257.32	3,128	618			
257.33	3,202	649			
257.34	3,277	682			
257.35	3,352	/15			
257.36	3,427	749			
257.37	3,502	/83			
257.38	3,577	819			
257.39	3,002	000			
257.40	3,720	092			
257.41	3,876	929			
257.42	3,070	1 007			
257 44	4 026	1,007			
257 45	4 101	1 087			
257.46	4,176	1,129			
257.47	4.250	1,171			
257.48	4.325	1.214			
257.49	4,400	1.257			
257.50	4,475	1,302			
257.51	4,475	1,302			
257.52	4,475	1,302			

HydroCAD® 10.00-26	is s/n 08202 © 2020 HydroCAD Software Solutions LLC
Prepared by {ente	r your company name nere}

Stage-Area-Storage for Pond S: Sed Forebay 1

Elevation	Surface	Storage	Elevation	Surface	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
253.00	1,016	0	254.06	1,443	1,230	
253.02	1,025	20	254.08	1,443	1,230	
253.04	1,033	41	254.10	1,443	1,230	
253.06	1,042	62	254.12	1,443	1,230	
253.08	1.050	83	254.14	1.443	1.230	
253.10	1.059	104	254.16	1,443	1,230	
253.12	1.067	125	254.18	1,443	1,230	
253.14	1.076	146	254.20	1,443	1,230	
253 16	1 084	168	254 22	1 443	1,230	
253 18	1,093	190	254 24	1 443	1,230	
253 20	1 101	212	254.26	1 443	1,200	
253 22	1 110	234	254.28	1 443	1,200	
253.24	1 1 1 8	256	254.20	1,443	1,200	
253.24	1,110	230	254.30	1,443	1,230	
253.20	1,127	213	254.52	1,445	1,230	
253.20	1,130	201	254.54	1,443	1,230	
203.30	1,144	324	204.00	1,443	1,230	
253.32	1,153	347	254.38	1,443	1,230	
253.34	1,101	370	254.40	1,443	1,230	
253.36	1,170	393	254.42	1,443	1,230	
253.38	1,178	417	254.44	1,443	1,230	
253.40	1,187	441	254.46	1,443	1,230	
253.42	1,195	464	254.48	1,443	1,230	
253.44	1,204	488	254.50	1,443	1,230	
253.46	1,212	513	254.52	1,443	1,230	
253.48	1,221	537	254.54	1,443	1,230	
253.50	1,230	561	254.56	1,443	1,230	
253.52	1,238	586	254.58	1,443	1,230	
253.54	1,247	611	254.60	1,443	1,230	
253.56	1,255	636	254.62	1,443	1,230	
253.58	1,264	661	254.64	1,443	1,230	
253.60	1,272	686	254.66	1,443	1,230	
253.62	1,281	712	254.68	1,443	1,230	
253.64	1.289	738	254.70	1.443	1,230	
253.66	1,298	764	254.72	1.443	1,230	
253.68	1,306	790	254.74	1,443	1,230	
253.70	1,315	816	254.76	1,443	1,230	
253.72	1,323	842	254.78	1,443	1,230	
253 74	1 332	869	254 80	1 443	1 230	
253 76	1,341	895	254.82	1 443	1,230	
253 78	1,349	922	254 84	1 443	1,230	
253.80	1,358	949	254.86	1 443	1,200	
253.82	1 366	977	254.88	1 443	1,200	
253.84	1,300	1 004	254.00	1 443	1,230	
253.86	1 383	1,004	254.00	1 //3	1,230	
253.88	1 302	1,052	254.92	1,443	1,230	
253.00	1,002	1,000	254.04	1,443	1,230	
200.90	1,400	1,007 1 115	204.90	1,440	1,200	
200.92	1,409	1,110	204.90	1,440	1,200	
200.94	1,417	1,144	200.00	1,440	1,200	
200.90	1,420	1,1/2	200.02	1,443	1,230	Pretreatment
203.90	1,434	1,201	200.04	1,443	1,230	
254.00	1,443	1,230				Volume
254.02	1,443	1,230				VOIUTTE
254.04	1,443	1,230				

2872-March 2025	Type III 24-hr	10 Year Rainfall=4.80"
Prepared by {enter your company name here}		Printed 3/14/2025
HvdroCAD® 10.00-26 s/n 08202 © 2020 HvdroCAD Software Solution	ns LLC	

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment EA1: EXA To Site Low Spot Runoff Area=25,645 sf 10.24% Impervious Runoff Depth>0.11" Tc=5.0 min CN=37 Runoff=0.01 cfs 0.005 af Subcatchment EA2: EXA To Site Low Spot 2 Runoff Area=36,183 sf 6.93% Impervious Runoff Depth>0.06" Tc=5.0 min CN=35 Runoff=0.01 cfs 0.004 af Runoff Area=48,508 sf 0.00% Impervious Runoff Depth>0.01" Subcatchment EA3: EXB To South PL Flow Length=222' Tc=11.2 min CN=31 Runoff=0.00 cfs 0.000 af Runoff Area=8,767 sf 100.00% Impervious Runoff Depth>4.56" Subcatchment PA1: WSD to CB1 Tc=5.0 min CN=98 Runoff=0.98 cfs 0.076 af Runoff Area=18,809 sf 71.86% Impervious Runoff Depth>2.81" Subcatchment PA2: WSD to CB2 Tc=5.0 min CN=81 Runoff=1.47 cfs 0.101 af Runoff Area=8,000 sf 100.00% Impervious Runoff Depth>4.56" Subcatchment PA3: Phase 1 Bldg Tc=5.0 min CN=98 Runoff=0.89 cfs 0.070 af Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>4.56" Subcatchment PA4: Phase 2 Bldg (east) Tc=5.0 min CN=98 Runoff=0.67 cfs 0.052 af Runoff Area=38,304 sf 45.48% Impervious Runoff Depth>1.59" Subcatchment PA5: WSD to Basin 2 Tc=5.0 min CN=66 Runoff=1.62 cfs 0.117 af Runoff Area=16,538 sf 0.00% Impervious Runoff Depth>0.16" Subcatchment PA6: WSD to low spot Tc=5.0 min CN=39 Runoff=0.01 cfs 0.005 af Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>4.56" Subcatchment PA7: Phase 2 Bldg (west) Tc=5.0 min CN=98 Runoff=0.67 cfs 0.052 af Runoff Area=7,918 sf 36.11% Impervious Runoff Depth>1.18" Subcatchment PA8: WSD to Yard Drain Tc=5.0 min CN=60 Runoff=0.23 cfs 0.018 af Inflow=0.00 cfs 0.000 af **Reach EA: SOUTHERLY PROPERTY LINE** Outflow=0.00 cfs 0.000 af Inflow=0.00 cfs 0.000 af Reach PA: SOUTHERLY PROPERTY LINE Outflow=0.00 cfs 0.000 af Peak Elev=254.65' Storage=6,413 cf Inflow=6.59 cfs 0.458 af Pond BMP: Basin Discarded=1.37 cfs 0.458 af Primary=0.00 cfs 0.000 af Outflow=1.37 cfs 0.458 af Peak Elev=256.20' Inflow=0.98 cfs 0.076 af Pond CB1: CB1, RIM 258.75 18.0" Round Culvert n=0.013 L=75.0' S=0.0000 '/' Outflow=0.98 cfs 0.076 af Pond CB2: CB2, RIM 259 Peak Elev=256.25' Inflow=1.47 cfs 0.101 af 18.0" Round Culvert n=0.013 L=124.3' S=0.0000 '/' Outflow=1.47 cfs 0.101 af

Type III 24-hr 10 Year Rainfall=4.80" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Pond DMH1: DMH, RIM 260.1	Peak Elev=256.16' Inflow=4.24 cfs 0.318 af
18.0" Roun	d Culvert n=0.013 L=108.0' S=0.0093 '/' Outflow=4.24 cfs 0.318 af
Pond LP1: Low Point 1	Peak Elev=257.15' Storage=225 cf Inflow=0.01 cfs 0.005 af
	Outflow=0.00 cfs 0.000 af
Pond LP2: Low Point 2	Peak Elev=257.08' Storage=180 cf Inflow=0.01 cfs 0.004 af
	Outflow=0.00 cfs 0.000 af
Pond LP3: Low Point 3	Peak Elev=257.11' Storage=21 cf Inflow=0.00 cfs 0.000 af
	Outflow=0.00 cfs 0.000 af
Pond LP4: Low Point 4 (Post-Devel)	Peak Elev=257.16' Storage=222 cf Inflow=0.01 cfs 0.005 af
	Outflow=0.00 cfs_0.000 af
Pond S: Sed Forebay 1	Peak Elev=255.07' Storage=1,230 cf Inflow=6.52 cfs 0.486 af
	Outflow=6.59 cfs 0.458 af
Pond YD: Yard Drain, RIM 258.25	Peak Elev=256.43' Inflow=0.23 cfs 0.018 af
10.0" Roun	d Culvert n=0.013 L=222.0' S=0.0011 '/' Outflow=0.23 cfs 0.018 af

2872-March 2025	Type III 24-hr	25 Year Rair	nfall=6.20"
Prepared by {enter your company name here}		Printed	3/14/2025
HvdroCAD® 10.00-26 s/n 08202 © 2020 HvdroCAD Software Solution	ns LLC		

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment EA1: EXA To Site Low Sp	ot Runoff Area=25,645 sf 10.24% Impervious Runoff Depth>0.39" Tc=5.0 min CN=37 Runoff=0.08 cfs 0.019 af
Subcatchment EA2: EXA To Site Low Sp	ot 2 Runoff Area=36,183 sf 6.93% Impervious Runoff Depth>0.29" Tc=5.0 min CN=35 Runoff=0.06 cfs 0.020 af
Subcatchment EA3: EXB To South PL	Runoff Area=48,508 sf 0.00% Impervious Runoff Depth>0.13" Flow Length=222' Tc=11.2 min CN=31 Runoff=0.02 cfs 0.012 af
Subcatchment PA1: WSD to CB1	Runoff Area=8,767 sf 100.00% Impervious Runoff Depth>5.96" Tc=5.0 min CN=98 Runoff=1.27 cfs 0.100 af
Subcatchment PA2: WSD to CB2	Runoff Area=18,809 sf 71.86% Impervious Runoff Depth>4.06" Tc=5.0 min CN=81 Runoff=2.12 cfs 0.146 af
SubcatchmentPA3: Phase 1 Bldg	Runoff Area=8,000 sf 100.00% Impervious Runoff Depth>5.96" Tc=5.0 min CN=98 Runoff=1.16 cfs 0.091 af
Subcatchment PA4: Phase 2 Bldg (east)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>5.96" Tc=5.0 min CN=98 Runoff=0.87 cfs 0.068 af
Subcatchment PA5: WSD to Basin 2	Runoff Area=38,304 sf 45.48% Impervious Runoff Depth>2.59" Tc=5.0 min CN=66 Runoff=2.73 cfs 0.190 af
Subcatchment PA6: WSD to low spot	Runoff Area=16,538 sf 0.00% Impervious Runoff Depth>0.50" Tc=5.0 min CN=39 Runoff=0.08 cfs 0.016 af
Subcatchment PA7: Phase 2 Bldg (west)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>5.96" Tc=5.0 min CN=98 Runoff=0.87 cfs 0.068 af
Subcatchment PA8: WSD to Yard Drain	Runoff Area=7,918 sf 36.11% Impervious Runoff Depth>2.05" Tc=5.0 min CN=60 Runoff=0.43 cfs 0.031 af
Reach EA: SOUTHERLY PROPERTY LINE	E Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Reach PA: SOUTHERLY PROPERTY LINE	E Inflow=0.00 cfs 0.000 af Outflow=0.00 cfs 0.000 af
Pond BMP: Basin Discarded=1.81	Peak Elev=255.23' Storage=9,922 cf Inflow=9.49 cfs 0.666 af cfs 0.666 af Primary=0.00 cfs 0.000 af Outflow=1.81 cfs 0.666 af
Pond CB1: CB1, RIM 258.75 18.0" Rour	Peak Elev=256.54' Inflow=1.27 cfs 0.100 af ad Culvert n=0.013 L=75.0' S=0.0000 '/' Outflow=1.27 cfs 0.100 af
Pond CB2: CB2, RIM 259 18.0" Round	Peak Elev=256.61' Inflow=2.12 cfs 0.146 af Culvert_n=0.013_L=124.3' S=0.0000 '/' Outflow=2.12 cfs 0.146 af

Type III 24-hr 25 Year Rainfall=6.20" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Pond DMH1: DMH, RIM 260.1	Peak Elev=256.51' Inflow=5.84 cfs 0.437 af
18.0" Round Cu	lvert n=0.013 L=108.0' S=0.0093 '/' Outflow=5.84 cfs 0.437 af
Pond P1 ow Point 1	Peak Elev=257 34' Storage=840 cf Inflow=0.08 cfs 0.019 af
	Outflow=0.00 cfs 0.000 af
Pond LP2: Low Point 2	Peak Elev=257.22' Storage=882 cf Inflow=0.06 cfs 0.020 af
	Outflow=0.00 cfs 0.000 at
Pond LP3: Low Point 3	Peak Elev=257.22' Storage=509 cf Inflow=0.02 cfs 0.012 af
	Outflow=0.00 cfs 0.000 af
Pond P4: Low Point 4 (Post-Devel)	Peak Elev=257 34' Storage=693 cf Inflow=0.08 cfs 0.016 af
	Outflow=0.00 cfs 0.000 af
Pond S: Sed Forebay 1	Peak Elev=255.23' Storage=1,230 cf Inflow=9.42 cfs 0.695 af
	Outflow=9.49 cfs 0.666 af
Pond YD: Yard Drain, RIM 258,25	Peak Elev=256.71' Inflow=0.43 cfs 0.031 af
10.0" Round Cu	lvert n=0.013 L=222.0' S=0.0011 '/' Outflow=0.43 cfs 0.031 af

2872-March 2025	Type III 24-hr	100 Year Rainfall=8.70"
Prepared by {enter your company name here}		Printed 3/14/2025
HvdroCAD® 10.00-26 s/n 08202 © 2020 HvdroCAD Software Soluti	ons LLC	

Time span=0.00-24.00 hrs, dt=0.01 hrs, 2401 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment EA1: EXA To Site Low Spot	Runoff Area=25,645 sf 10.24% Impervious Runoff Depth>1.25" Tc=5.0 min CN=37 Runoff=0.59 cfs 0.062 af
Subcatchment EA2: EXA To Site Low Spot	2 Runoff Area=36,183 sf 6.93% Impervious Runoff Depth>1.05" Tc=5.0 min CN=35 Runoff=0.58 cfs 0.073 af
Subcatchment EA3: EXB To South PL	Runoff Area=48,508 sf 0.00% Impervious Runoff Depth>0.68" ow Length=222' Tc=11.2 min CN=31 Runoff=0.30 cfs 0.063 af
Subcatchment PA1: WSD to CB1	Runoff Area=8,767 sf 100.00% Impervious Runoff Depth>8.45" Tc=5.0 min CN=98 Runoff=1.78 cfs 0.142 af
Subcatchment PA2: WSD to CB2	Runoff Area=18,809 sf 71.86% Impervious Runoff Depth>6.40" Tc=5.0 min CN=81 Runoff=3.28 cfs 0.230 af
Subcatchment PA3: Phase 1 Bldg	Runoff Area=8,000 sf 100.00% Impervious Runoff Depth>8.45" Tc=5.0 min CN=98 Runoff=1.63 cfs 0.129 af
Subcatchment PA4: Phase 2 Bldg (east)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>8.45" Tc=5.0 min CN=98 Runoff=1.22 cfs 0.097 af
Subcatchment PA5: WSD to Basin 2	Runoff Area=38,304 sf 45.48% Impervious Runoff Depth>4.58" Tc=5.0 min CN=66 Runoff=4.90 cfs 0.336 af
Subcatchment PA6: WSD to low spot	Runoff Area=16,538 sf 0.00% Impervious Runoff Depth>1.46" Tc=5.0 min CN=39 Runoff=0.49 cfs 0.046 af
Subcatchment PA7: Phase 2 Bldg (west)	Runoff Area=6,000 sf 100.00% Impervious Runoff Depth>8.45" Tc=5.0 min CN=98 Runoff=1.22 cfs 0.097 af
Subcatchment PA8: WSD to Yard Drain	Runoff Area=7,918 sf 36.11% Impervious Runoff Depth>3.86" Tc=5.0 min CN=60 Runoff=0.85 cfs 0.059 af
Reach EA: SOUTHERLY PROPERTY LINE	Inflow=0.05 cfs 0.000 af Outflow=0.05 cfs 0.000 af
Reach PA: SOUTHERLY PROPERTY LINE	Inflow=0.05 cfs 0.016 af Outflow=0.05 cfs 0.016 af
Pond BMP: Basin Discarded=2.45 cfs	Peak Elev=256.22' Storage=17,268 cf Inflow=14.88 cfs 1.061 af s 1.062 af Primary=0.00 cfs 0.000 af Outflow=2.45 cfs 1.062 af
Pond CB1: CB1, RIM 258.75 18.0" Round	Peak Elev=257.52' Inflow=1.78 cfs 0.142 af Culvert n=0.013 L=75.0' S=0.0000 '/' Outflow=1.78 cfs 0.142 af
Pond CB2: CB2, RIM 259 18.0" Round C	Peak Elev=257.69' Inflow=3.28 cfs 0.230 af Culvert n=0.013 L=124.3' S=0.0000 '/' Outflow=3.28 cfs 0.230 af

Type III 24-hr 100 Year Rainfall=8.70" Printed 3/14/2025

Prepared by {enter your company name here} HydroCAD® 10.00-26 s/n 08202 © 2020 HydroCAD Software Solutions LLC

Pond DMH1: DMH, RIM 260.1 18.0" Round Co	Peak Elev=257.45' Inflow=8.75 cfs 0.657 af ulvert n=0.013 L=108.0' S=0.0093 '/' Outflow=8.75 cfs 0.657 af
Pond LP1: Low Point 1	Peak Elev=257.67' Storage=2,679 cf Inflow=0.59 cfs 0.062 af Outflow=0.00 cfs 0.000 af
Pond LP2: Low Point 2	Peak Elev=257.47' Storage=3,175 cf Inflow=0.58 cfs 0.073 af Outflow=0.00 cfs 0.000 af
Pond LP3: Low Point 3	Peak Elev=257.40' Storage=2,735 cf Inflow=0.30 cfs 0.063 af Outflow=0.05 cfs 0.000 af
Pond LP4: Low Point 4 (Post-Devel)	Peak Elev=257.50' Storage=1,302 cf Inflow=0.49 cfs 0.046 af Outflow=0.05 cfs 0.016 af
Pond S: Sed Forebay 1	Peak Elev=256.22' Storage=1,230 cf Inflow=14.87 cfs 1.090 af Outflow=14.88 cfs 1.061 af
Pond YD: Yard Drain, RIM 258.25 10.0" Round Co	Peak Elev=257.85' Inflow=0.85 cfs 0.059 af ulvert n=0.013 L=222.0' S=0.0011 '/' Outflow=0.85 cfs 0.059 af

Appendix C – Soil Evaluations

STATE OF RHODE ISLAND

Page 1 of 3

Department of Environmental Management Office of Water Resources Email: dem.OWTS@dem.ri.gov Site Evaluation Form

Part A – Soil Profile Description

Application Number _____

Property C Property L	wner: ocation:	Andrew 71 Hark	<u>Barber</u> ney Hill I	Road		Pla	it:	Lot:		
Date of Te	st Hole:	<u>10/31/24</u>	W	eather: <u>Sur</u>	iny 60 deg	rees Shaded: \	Yes No	Time:	8:00-10:00	
Soil Evalua	ator email a	ddress:	brian.ki	ng@cross	maneng.c	OM		010		
True 1 Horizon Boundaries Soli Colors Re-Dox										
TH Horizon	Depth Inches	Dist	Торо	Matrix	Re-Dox Features	Ab. S. Contr.	Texture	Structure	Consistence	Soil Category
А	0-10			10YR 4/4			ls	gr	fr	remove
Bw1	10-18	g	w	2.5Y 5/6			lfs	Sbk	fr	4
Bw2	18-30	g	w	2.5Y 6/4			lfs	Sbk	fr	4
C1	30-132	g	w	2.5Y 6/3			gcos	Osg	1	1
TH 2		Horizon B	oundaries	Soil (Colors	Re-Dox		 		
Horizon	Depth Inches	Dist	Торо	Matrix	Re-Dox Features	Ab. S. Contr.	Texture	Structure	Consistence	Soli Category
A	0-12			10YR 3/4			sl	gr	fr	remove
Bw1	12-20	g	347	2 5V				a1.1	fr	4
		0	vv	5/6			lfs	Sbk	11	
Bw2	20-26	g	w	2.51 5/6 2.5Y 6/4			lfs lfs	Sbk Sbk	fr	4
Bw2 C1	20-26 26-120	g	w	2.5Y 5/6 2.5Y 6/4 2.5Y 6/3			lfs lfs gcos	Sbk Sbk Osg	fr 1	4
Bw2 C1	20-26	g	w	2.5Y 5/6 2.5Y 6/4 2.5Y 6/3			lfs lfs gcos	Sbk Sbk Osg	fr 1	4
Bw2 C1	20-26	g g	W W	2.5Y 5/6 2.5Y 6/4 2.5Y 6/3			lfs lfs gcos	Sbk Sbk Osg	fr 1	4 1 2esign
Bw2 C1 TH_1	20-26 26-120 _ Soil Class	g g <u>3</u> Outwash	W W W Total Depth	2.5Y 5/6 2.5Y 6/4 2.5Y 6/3	ervious/Limiti		lfs lfs gcos A(og) GW S	Sbk Sbk Osg	fr 1	4 1
Bw2 C1 TH_1 TH_2	20-26 26-120 _ Soil Class _ Soil Class	g g <u>Outwash</u> <u>Outwash</u>	W W W Total Depth	2.5Y 5/6 2.5Y 6/4 2.5Y 6/3	ervious/Limiti ervious/Limiti	ng Layer Depth <u>N</u>	A (og) GW S	Sbk Sbk Osg Seepage Depth Seepage Depth	II fr 1 <u>NA</u> SHWT	4 1 <u>96"</u> (og) <u>96"</u> (og

STATE OF RHODE ISLAND

Page 2 of 3

Department of Environmental Management Office of Water Resources Email: dem.OWTS@dem.ri.gov Site Evaluation Form

Part A – Soil Profile Description

Application Number ____

Property Owner: <u>Andrew Barber</u>				
Property Location: 71 Harkney Hill Road	Plat:	Lot:		
Date of Test Hole: <u>10-31-24</u> Weather: <u>Sunny 60 degrees</u>	Shaded: Yes 🗖	No 🖾	Time: <u>8:00</u> - 10:00	
Soil Evaluator: Brian King	License Number:	D4010		
Soil Evaluator email address:				

TH 3		Horizon Boundaries		Soll Colors		Re-Dox				Coll
Horizon	Depth Inches	Dist	Торо	Matrix	Re-Dox Features	Ab. S. Contr.	Texture	Structure	Consistence	Category
A	0-9			10YR 3/4			sl	gr	fr	remove
Bw1	9-16	g	w	2.5Y 5/6			lfs	Sbk	fr	4
Bw2	16-20	g	w	2.5Y 6/4			lfs	Sbk	fr	4
C1	20-120	g	w	2.5Y 6/3			gcos	Osg	1	1
<i>TH<u>4</u></i> Horizon	Depth Inches	Horizon B Dist	oundaries Topo	Soil C Matrix	Colors Re-Dox Features	Re-Dox Ab. S. Contr.	Texture	Structure	Consistence	Soil Category
А	0-10			10YR 4/4			sl	gr	fr	remove
Bw1	10-21	g	w	2.5Y 5/6			lfs	Sbk	fr	4
C1	21-130	g	w	2.5Y 6/3			gcos (stratified)	Osg	1	1
			-							
TH 3	Soil Class	Outwash	Total Depth	120" Imp	ervious/Limiti	ng Laver Depth NA	A (og) GW Se	epage Depth	NA SHW	esign 102"(ng)
TH <u>4</u>	_ Soil Class	<u>Outwash</u>	Total Depth	Imp	ervious/Limiti	ng Layer Depth	A(og) GW Se	eepage Depth	NA_SHWT	design 102" (og
Comments	: <u>TP 3</u> TP4	For OWTS For STU d	<u>8 design, us</u> lesign infilt	e design loa ration rate u	ding rate of ise Rawls rat	0.61 g/sf/d te of 8.27 in/hr			•	

STATE OF RHODE ISLAND

Department of Environmental Management Office of Water Resources Email: dem.OWTS@dem.ri.gov

Page 3 of 3

Site Evaluation Form Part A – Soil Profile Description

Application	Number .
-------------	----------

Property O Property Lo Date of Tes	owner: ocation: st Hole:	<u>Andrew</u> 71 Harl 10/31/24	v Barber kney Hill We	<u>Road</u> eather: <u>Su</u>	nny 60 de	grees	S	Pla	at: Yes	Lot:	8:00-10:00)
Soil Evalua	ator email a	ddress: <u>t</u>	s prian.king	@crossma	aneng.com	1	LI			/10		
TH 5		Horizon B	Boundarles	Soll (Colors	Re-Dox						Soil
Horizon	Depth Inches	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Contr.	Texture	Structure	Consistence	Category
A	0-8			10YR 4/4				_	sl	gr	fr	remove
Bw1	8-25	g	w	2.5Y 5/6				_	lfs	Sbk	fr	4
Bw2	25-29	g	w	2.5Y 6/4				_	lfs	Sbk	fr	4
C1	29-126	g	w	2.5Y 6/3					gcos (stratified)	Osg	1	1
								• • •				
		Horizon B	loundaries	Soil	`olom		Pa.D					
<i>TH</i> Horizon	Depth	Dist	Торо	Matrix	Re-Dox Features	Ab.	S.	Contr.	Texture	Structure	Consistence	Soil Category
										1 111100		
									:			
TH <u>5</u> TH Comments:	_ Soil Class _ Soil Class :For ST	SOutwash S U design i	Total Depth	126" imp Imp	ervious/Limiti ervious/Limiti vls rate of 8.	ing Laye ing Laye 27 in/h	er Dej er Dej ur	oth <u>N</u>	A(og) GW Se (og) GW Se	eepage Depth eepage Depth	<u>NA</u> SHWT SHWT	(og
										. <u> </u>	·	

Appendix D – Soil Survey Map

USDA Natural Resources

Conservation Service

Soil Map-State of Rhode Island: Bristol, Kent, Newport, Providence, and Washington Counties

Map Unit Legend

Man Linit Crumbal	Man Linit Name		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
НКА	Hinckley loamy sand, 0 to 3 percent slopes	15.8	31.7%
MmA	Merrimac fine sandy loam, 0 to 3 percent slopes	26.1	52.3%
W	Water	8.0	16.0%
Totals for Area of Interest		49.8	100.0%

Appendix E – FEMA Flood Map

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023
Appendix F – Groundwater Mounding Analyais

Infiltration Basin Groundwater Mounding Analysis

The proposed Infiltration Basin provides storage for the recharge of impervious runoff and for the mitigation of peak flows and runoff volumes from the 1-, 10-, 25-, and 100- year storm events. The minimum separation from the bottom of the system to seasonal high groundwater provided is 3.0 feet and the separation from the bottom of the system to the restrictive layer is greater than 6.0 feet. This mounding analysis was performed to verify the system will drain between storm events. The response of the water table was predicted by using the "USGS SIR 2010-5102 Simulation of Groundwater Mounding Beneath Hypothetical Infiltration Basins Spread Sheet" which is based upon the Hantush Method (1967). The program modeled the mound created by the 100-year storm event infiltration volume determined by the Hydrocad program with groundwater levels at the seasonal high elevation. The input data is shown below:

<u>100 Year – Storm Event Groundwater Mound Analysis Input Data:</u>

- 1. Recharge Rate = 8.27 in/hour = 16.54 ft/day (sand)
- 2. Specific Yield of saturated zone = 0.22 (sand)
- Horizontal Hydraulic Conductivity of saturated zone = Vertical Conductivity x 10 = 8.27 in/hour (sand) x 10 = 82.7 in/hour = 165.4 ft/day
- 4. Dimension of System: Width = 4' min, Length = 227' (1,256 sf bottom of basin)
- 5. Duration of Infiltration Period: 100-year storm, 24-hour exfiltration (discarded) volume = 1.057 acre-feet = 46,043 cf (*Hyd. BMP*) Estimated Time to Drain = (46,043 cf)/[(8.27 in/hr) (1'/12") (1,256 sf)] = 53.20 hours = 2.22 days
 6. Initial thickness of Saturated Zone = 6.0'
- 7. Range of Model = 120 feet

The results are shown on the following page and indicate that under these conditions the resulting mound does not break out above land.

h(max) ∆h(max)

Distance from center of basin

Ground-

water

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aguifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

		use consistent units (e.g. feet & days or inches & hours)	Conversion Table		
put Values			inch/hour fee	t/day	
16.5400	R	Recharge (infiltration) rate (feet/day)	0.67	1.33	
0.220	Sy	Specific yield, Sy (dimensionless, between 0 and 1)			
165.40	к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00	In the report accompanying this spreadsheet
113.500	х	1/2 length of basin (x direction, in feet)			(USGS SIR 2010-5102), vertical soil permeability
2.000	У	1/2 width of basin (y direction, in feet)	hours day	/s	(ft/d) is assumed to be one-tenth horizontal
2.220	t	duration of infiltration period (days)	36	1.50	hydraulic conductivity (ft/d).
6.000	hi(0)	initial thickness of saturated zone (feet)			

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

h(max) ∆h(max)

Distance from

Ground-

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aquifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

	use consistent units (e.g. feet & days or inches & hours)	Conversion Table		
		inch/hour fee	/day	
R	Recharge (infiltration) rate (feet/day)	0.67	1.33	
Sy	Specific yield, Sy (dimensionless, between 0 and 1)			
к	Horizontal hydraulic conductivity, Kh (feet/day)*	2.00	4.00	4.00
x	1/2 length of basin (x direction, in feet)			(USGS SIR 2010-5102), vertical soil permeability
У	1/2 width of basin (y direction, in feet)	hours day	/s	(ft/d) is assumed to be one-tenth horizontal
t	duration of infiltration period (days)	36	1.50	hydraulic conductivity (ft/d).
hi(0)	initial thickness of saturated zone (feet)			
	R Sy K x y t hi(0)	RRecharge (infiltration) rate (feet/day)SySpecific yield, Sy (dimensionless, between 0 and 1)KHorizontal hydraulic conductivity, Kh (feet/day)*x1/2 length of basin (x direction, in feet)y1/2 width of basin (y direction, in feet)tduration of infiltration period (days)hi(0)initial thickness of saturated zone (feet)	use consistent units (e.g. feet & days or inches & hours) Conversion Table inch/hour feet R Recharge (infiltration) rate (feet/day) 0.67 Sy Specific yield, Sy (dimensionless, between 0 and 1) 0.67 K Horizontal hydraulic conductivity, Kh (feet/day)* 2.00 x 1/2 length of basin (x direction, in feet) hours day y 1/2 width of basin (y direction, in feet) 56 t duration of infiltration period (days) 36 hi(0) initial thickness of saturated zone (feet)	use consistent units (e.g. feet & days or inches & hours) Conversion Table inch/hour Feet/day R Recharge (infiltration) rate (feet/day) 0.67 1.33 Sy Specific yield, Sy (dimensionless, between 0 and 1) 0.67 1.33 K Horizontal hydraulic conductivity, Kh (feet/day)* 2.00 4.00 x 1/2 length of basin (x direction, in feet) hours days t duration of infiltration period (days) 36 1.50 hi(0) initial thickness of saturated zone (feet) 100

maximum thickness of saturated zone (beneath center of basin at end of infiltration period) maximum groundwater mounding (beneath center of basin at end of infiltration period)

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

Appendix G - Watershed Maps